| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|- P = ( Base ` G ) |
| 2 |
|
isperp.d |
|- .- = ( dist ` G ) |
| 3 |
|
isperp.i |
|- I = ( Itv ` G ) |
| 4 |
|
isperp.l |
|- L = ( LineG ` G ) |
| 5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
| 7 |
|
footeq.x |
|- ( ph -> X e. A ) |
| 8 |
|
footeq.y |
|- ( ph -> Y e. A ) |
| 9 |
|
footeq.z |
|- ( ph -> Z e. P ) |
| 10 |
|
footeq.1 |
|- ( ph -> ( X L Z ) ( perpG ` G ) A ) |
| 11 |
|
footeq.2 |
|- ( ph -> ( Y L Z ) ( perpG ` G ) A ) |
| 12 |
|
oveq2 |
|- ( x = X -> ( Z L x ) = ( Z L X ) ) |
| 13 |
12
|
breq1d |
|- ( x = X -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L X ) ( perpG ` G ) A ) ) |
| 14 |
|
oveq2 |
|- ( x = Y -> ( Z L x ) = ( Z L Y ) ) |
| 15 |
14
|
breq1d |
|- ( x = Y -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L Y ) ( perpG ` G ) A ) ) |
| 16 |
1 2 3 4 5 6 7 9 10
|
footne |
|- ( ph -> -. Z e. A ) |
| 17 |
1 2 3 4 5 6 9 16
|
foot |
|- ( ph -> E! x e. A ( Z L x ) ( perpG ` G ) A ) |
| 18 |
1 4 3 5 6 7
|
tglnpt |
|- ( ph -> X e. P ) |
| 19 |
4 5 10
|
perpln1 |
|- ( ph -> ( X L Z ) e. ran L ) |
| 20 |
1 3 4 5 18 9 19
|
tglnne |
|- ( ph -> X =/= Z ) |
| 21 |
1 3 4 5 18 9 20
|
tglinecom |
|- ( ph -> ( X L Z ) = ( Z L X ) ) |
| 22 |
21 10
|
eqbrtrrd |
|- ( ph -> ( Z L X ) ( perpG ` G ) A ) |
| 23 |
1 4 3 5 6 8
|
tglnpt |
|- ( ph -> Y e. P ) |
| 24 |
4 5 11
|
perpln1 |
|- ( ph -> ( Y L Z ) e. ran L ) |
| 25 |
1 3 4 5 23 9 24
|
tglnne |
|- ( ph -> Y =/= Z ) |
| 26 |
1 3 4 5 23 9 25
|
tglinecom |
|- ( ph -> ( Y L Z ) = ( Z L Y ) ) |
| 27 |
26 11
|
eqbrtrrd |
|- ( ph -> ( Z L Y ) ( perpG ` G ) A ) |
| 28 |
13 15 17 7 8 22 27
|
reu2eqd |
|- ( ph -> X = Y ) |