Metamath Proof Explorer


Theorem footeq

Description: Uniqueness of the foot point. (Contributed by Thierry Arnoux, 1-Mar-2020)

Ref Expression
Hypotheses isperp.p
|- P = ( Base ` G )
isperp.d
|- .- = ( dist ` G )
isperp.i
|- I = ( Itv ` G )
isperp.l
|- L = ( LineG ` G )
isperp.g
|- ( ph -> G e. TarskiG )
isperp.a
|- ( ph -> A e. ran L )
footeq.x
|- ( ph -> X e. A )
footeq.y
|- ( ph -> Y e. A )
footeq.z
|- ( ph -> Z e. P )
footeq.1
|- ( ph -> ( X L Z ) ( perpG ` G ) A )
footeq.2
|- ( ph -> ( Y L Z ) ( perpG ` G ) A )
Assertion footeq
|- ( ph -> X = Y )

Proof

Step Hyp Ref Expression
1 isperp.p
 |-  P = ( Base ` G )
2 isperp.d
 |-  .- = ( dist ` G )
3 isperp.i
 |-  I = ( Itv ` G )
4 isperp.l
 |-  L = ( LineG ` G )
5 isperp.g
 |-  ( ph -> G e. TarskiG )
6 isperp.a
 |-  ( ph -> A e. ran L )
7 footeq.x
 |-  ( ph -> X e. A )
8 footeq.y
 |-  ( ph -> Y e. A )
9 footeq.z
 |-  ( ph -> Z e. P )
10 footeq.1
 |-  ( ph -> ( X L Z ) ( perpG ` G ) A )
11 footeq.2
 |-  ( ph -> ( Y L Z ) ( perpG ` G ) A )
12 oveq2
 |-  ( x = X -> ( Z L x ) = ( Z L X ) )
13 12 breq1d
 |-  ( x = X -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L X ) ( perpG ` G ) A ) )
14 oveq2
 |-  ( x = Y -> ( Z L x ) = ( Z L Y ) )
15 14 breq1d
 |-  ( x = Y -> ( ( Z L x ) ( perpG ` G ) A <-> ( Z L Y ) ( perpG ` G ) A ) )
16 1 2 3 4 5 6 7 9 10 footne
 |-  ( ph -> -. Z e. A )
17 1 2 3 4 5 6 9 16 foot
 |-  ( ph -> E! x e. A ( Z L x ) ( perpG ` G ) A )
18 1 4 3 5 6 7 tglnpt
 |-  ( ph -> X e. P )
19 4 5 10 perpln1
 |-  ( ph -> ( X L Z ) e. ran L )
20 1 3 4 5 18 9 19 tglnne
 |-  ( ph -> X =/= Z )
21 1 3 4 5 18 9 20 tglinecom
 |-  ( ph -> ( X L Z ) = ( Z L X ) )
22 21 10 eqbrtrrd
 |-  ( ph -> ( Z L X ) ( perpG ` G ) A )
23 1 4 3 5 6 8 tglnpt
 |-  ( ph -> Y e. P )
24 4 5 11 perpln1
 |-  ( ph -> ( Y L Z ) e. ran L )
25 1 3 4 5 23 9 24 tglnne
 |-  ( ph -> Y =/= Z )
26 1 3 4 5 23 9 25 tglinecom
 |-  ( ph -> ( Y L Z ) = ( Z L Y ) )
27 26 11 eqbrtrrd
 |-  ( ph -> ( Z L Y ) ( perpG ` G ) A )
28 13 15 17 7 8 22 27 reu2eqd
 |-  ( ph -> X = Y )