Metamath Proof Explorer


Theorem footexALT

Description: Alternative version of footex which minimization requires a notably long time. (Contributed by Thierry Arnoux, 19-Oct-2019) (New usage is discouraged.) (Proof modification is discouraged.)

Ref Expression
Hypotheses isperp.p
|- P = ( Base ` G )
isperp.d
|- .- = ( dist ` G )
isperp.i
|- I = ( Itv ` G )
isperp.l
|- L = ( LineG ` G )
isperp.g
|- ( ph -> G e. TarskiG )
isperp.a
|- ( ph -> A e. ran L )
foot.x
|- ( ph -> C e. P )
foot.y
|- ( ph -> -. C e. A )
Assertion footexALT
|- ( ph -> E. x e. A ( C L x ) ( perpG ` G ) A )

Proof

Step Hyp Ref Expression
1 isperp.p
 |-  P = ( Base ` G )
2 isperp.d
 |-  .- = ( dist ` G )
3 isperp.i
 |-  I = ( Itv ` G )
4 isperp.l
 |-  L = ( LineG ` G )
5 isperp.g
 |-  ( ph -> G e. TarskiG )
6 isperp.a
 |-  ( ph -> A e. ran L )
7 foot.x
 |-  ( ph -> C e. P )
8 foot.y
 |-  ( ph -> -. C e. A )
9 eqid
 |-  ( pInvG ` G ) = ( pInvG ` G )
10 5 ad3antrrr
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> G e. TarskiG )
11 10 ad2antrr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> G e. TarskiG )
12 11 ad2antrr
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> G e. TarskiG )
13 12 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> G e. TarskiG )
14 13 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> G e. TarskiG )
15 14 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> G e. TarskiG )
16 eqid
 |-  ( ( pInvG ` G ) ` x ) = ( ( pInvG ` G ) ` x )
17 7 ad3antrrr
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> C e. P )
18 17 ad2antrr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> C e. P )
19 18 ad6antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> C e. P )
20 19 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> C e. P )
21 simplr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> d e. P )
22 simp-4r
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> y e. P )
23 22 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> y e. P )
24 23 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> y e. P )
25 24 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. P )
26 simprr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- d ) = ( y .- C ) )
27 26 eqcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- C ) = ( y .- d ) )
28 1 2 3 4 9 15 16 20 21 25 27 midexlem
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> E. x e. P d = ( ( ( pInvG ` G ) ` x ) ` C ) )
29 15 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> G e. TarskiG )
30 25 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. P )
31 simp-6r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> z e. P )
32 31 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> z e. P )
33 simprl
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. P )
34 simp-4r
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> p e. P )
35 34 ad4antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> p e. P )
36 35 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. P )
37 simp-5r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) )
38 37 simprd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- z ) = ( y .- p ) )
39 38 eqcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- p ) = ( y .- z ) )
40 39 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- p ) = ( y .- z ) )
41 simp-7r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> C = ( ( ( pInvG ` G ) ` p ) ` y ) )
42 41 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C = ( ( ( pInvG ` G ) ` p ) ` y ) )
43 simpllr
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> a e. P )
44 43 ad2antrr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> a e. P )
45 44 ad2antrr
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> a e. P )
46 45 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> a e. P )
47 46 ad4antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a e. P )
48 simplr
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> b e. P )
49 48 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> b e. P )
50 simp-11r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( A = ( a L b ) /\ a =/= b ) )
51 50 simprd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a =/= b )
52 51 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> b =/= a )
53 simp-9r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) )
54 53 simpld
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a e. ( b I y ) )
55 1 3 4 15 49 47 25 52 54 btwnlng3
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. ( b L a ) )
56 1 3 4 15 47 49 25 51 55 lncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. ( a L b ) )
57 50 simpld
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> A = ( a L b ) )
58 56 57 eleqtrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. A )
59 58 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. A )
60 8 ad3antrrr
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> -. C e. A )
61 60 ad10antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> -. C e. A )
62 61 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> -. C e. A )
63 nelne2
 |-  ( ( y e. A /\ -. C e. A ) -> y =/= C )
64 59 62 63 syl2anc
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y =/= C )
65 64 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C =/= y )
66 42 65 eqnetrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` p ) ` y ) =/= y )
67 eqid
 |-  ( ( pInvG ` G ) ` p ) = ( ( pInvG ` G ) ` p )
68 1 2 3 4 9 29 36 67 30 mirinv
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( ( pInvG ` G ) ` p ) ` y ) = y <-> p = y ) )
69 68 necon3bid
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( ( pInvG ` G ) ` p ) ` y ) =/= y <-> p =/= y ) )
70 66 69 mpbid
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p =/= y )
71 70 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y =/= p )
72 1 2 3 29 30 36 30 32 40 71 tgcgrneq
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y =/= z )
73 72 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> z =/= y )
74 eqid
 |-  ( ( pInvG ` G ) ` z ) = ( ( pInvG ` G ) ` z )
75 simp-4r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> q e. P )
76 75 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> q e. P )
77 simp-4r
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> z e. P )
78 simplr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> q e. P )
79 1 2 3 4 9 14 77 74 78 mircl
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> ( ( ( pInvG ` G ) ` z ) ` q ) e. P )
80 79 ad3antrrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` z ) ` q ) e. P )
81 20 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C e. P )
82 simpllr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> d e. P )
83 1 2 3 4 9 29 36 67 30 mirbtwn
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( ( ( ( pInvG ` G ) ` p ) ` y ) I y ) )
84 42 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( C I y ) = ( ( ( ( pInvG ` G ) ` p ) ` y ) I y ) )
85 83 84 eleqtrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( C I y ) )
86 simpllr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) )
87 86 simpld
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. ( p I q ) )
88 87 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( p I q ) )
89 1 2 3 29 81 36 30 76 70 85 88 tgbtwnouttr2
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( C I q ) )
90 1 2 3 29 81 30 76 89 tgbtwncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( q I C ) )
91 simplrl
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) )
92 eqid
 |-  ( cgrG ` G ) = ( cgrG ` G )
93 53 simprd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( a .- y ) = ( a .- C ) )
94 41 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( a .- C ) = ( a .- ( ( ( pInvG ` G ) ` p ) ` y ) ) )
95 93 94 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( a .- y ) = ( a .- ( ( ( pInvG ` G ) ` p ) ` y ) ) )
96 1 2 3 4 9 15 47 35 25 israg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( <" a p y "> e. ( raG ` G ) <-> ( a .- y ) = ( a .- ( ( ( pInvG ` G ) ` p ) ` y ) ) ) )
97 95 96 mpbird
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> <" a p y "> e. ( raG ` G ) )
98 86 simprd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- q ) = ( y .- a ) )
99 1 2 3 15 47 25 47 20 93 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- a ) = ( C .- a ) )
100 98 99 eqtr2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( C .- a ) = ( y .- q ) )
101 1 3 4 15 47 49 51 tglinerflx1
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a e. ( a L b ) )
102 101 57 eleqtrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a e. A )
103 nelne2
 |-  ( ( a e. A /\ -. C e. A ) -> a =/= C )
104 102 61 103 syl2anc
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> a =/= C )
105 104 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> C =/= a )
106 1 2 3 15 20 47 25 75 100 105 tgcgrneq
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y =/= q )
107 106 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> q =/= y )
108 1 2 3 15 35 25 75 87 tgbtwncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. ( q I p ) )
109 37 simpld
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> y e. ( a I z ) )
110 1 2 3 15 25 75 25 47 98 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( q .- y ) = ( a .- y ) )
111 1 2 3 15 75 47 axtgcgrrflx
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( q .- a ) = ( a .- q ) )
112 98 eqcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- a ) = ( y .- q ) )
113 1 2 3 15 75 25 35 47 25 31 47 75 107 108 109 110 39 111 112 axtg5seg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( p .- a ) = ( z .- q ) )
114 1 2 3 15 35 47 31 75 113 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( a .- p ) = ( q .- z ) )
115 1 2 3 15 25 35 25 31 39 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( p .- y ) = ( z .- y ) )
116 1 2 92 15 47 35 25 75 31 25 114 115 112 trgcgr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> <" a p y "> ( cgrG ` G ) <" q z y "> )
117 1 2 3 4 9 15 47 35 25 92 75 31 25 97 116 ragcgr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> <" q z y "> e. ( raG ` G ) )
118 1 2 3 4 9 15 75 31 25 117 ragcom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> <" y z q "> e. ( raG ` G ) )
119 1 2 3 4 9 15 25 31 75 israg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( <" y z q "> e. ( raG ` G ) <-> ( y .- q ) = ( y .- ( ( ( pInvG ` G ) ` z ) ` q ) ) ) )
120 118 119 mpbid
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> ( y .- q ) = ( y .- ( ( ( pInvG ` G ) ` z ) ` q ) ) )
121 120 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- q ) = ( y .- ( ( ( pInvG ` G ) ` z ) ` q ) ) )
122 27 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- C ) = ( y .- d ) )
123 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( ( ( pInvG ` G ) ` z ) ` q ) = ( ( ( pInvG ` G ) ` z ) ` q ) )
124 simprr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> d = ( ( ( pInvG ` G ) ` x ) ` C ) )
125 1 2 3 4 9 29 74 16 76 80 30 81 82 32 33 90 91 121 122 123 124 krippen
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( z I x ) )
126 1 3 4 29 32 30 33 73 125 btwnlng3
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( z L y ) )
127 1 3 4 29 30 32 33 72 126 lncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( y L z ) )
128 6 ad5antr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> A e. ran L )
129 128 ad9antr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A e. ran L )
130 47 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> a e. P )
131 93 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( a .- y ) = ( a .- C ) )
132 131 eqcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( a .- C ) = ( a .- y ) )
133 104 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> a =/= C )
134 1 2 3 29 130 81 130 30 132 133 tgcgrneq
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> a =/= y )
135 109 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y e. ( a I z ) )
136 1 3 4 29 130 30 32 134 135 btwnlng3
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> z e. ( a L y ) )
137 102 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> a e. A )
138 1 3 4 29 130 30 134 134 129 137 59 tglinethru
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A = ( a L y ) )
139 136 138 eleqtrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> z e. A )
140 1 3 4 29 30 32 72 72 129 59 139 tglinethru
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> A = ( y L z ) )
141 127 140 eleqtrrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. A )
142 nelne2
 |-  ( ( x e. A /\ -. C e. A ) -> x =/= C )
143 141 62 142 syl2anc
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x =/= C )
144 143 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C =/= x )
145 1 3 4 29 81 33 144 tgelrnln
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( C L x ) e. ran L )
146 1 3 4 29 81 33 144 tglinerflx2
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( C L x ) )
147 146 141 elind
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> x e. ( ( C L x ) i^i A ) )
148 1 3 4 29 81 33 144 tglinerflx1
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> C e. ( C L x ) )
149 29 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> G e. TarskiG )
150 130 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> a e. P )
151 30 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> y e. P )
152 36 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> p e. P )
153 81 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> C e. P )
154 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> C = C )
155 simpr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> y = x )
156 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> a = a )
157 154 155 156 s3eqd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" C y a "> = <" C x a "> )
158 33 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> x e. P )
159 32 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z e. P )
160 107 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> q =/= y )
161 1 2 3 29 30 76 30 80 121 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( q .- y ) = ( ( ( ( pInvG ` G ) ` z ) ` q ) .- y ) )
162 1 2 3 4 9 29 32 74 76 mircgr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( z .- ( ( ( pInvG ` G ) ` z ) ` q ) ) = ( z .- q ) )
163 162 eqcomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( z .- q ) = ( z .- ( ( ( pInvG ` G ) ` z ) ` q ) ) )
164 1 2 3 29 32 76 32 80 163 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( q .- z ) = ( ( ( ( pInvG ` G ) ` z ) ` q ) .- z ) )
165 eqidd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- z ) = ( y .- z ) )
166 1 2 3 29 76 30 81 80 30 82 32 32 160 90 91 161 122 164 165 axtg5seg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( C .- z ) = ( d .- z ) )
167 1 2 3 29 81 32 82 32 166 tgcgrcomlr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( z .- C ) = ( z .- d ) )
168 124 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( z .- d ) = ( z .- ( ( ( pInvG ` G ) ` x ) ` C ) ) )
169 167 168 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( z .- C ) = ( z .- ( ( ( pInvG ` G ) ` x ) ` C ) ) )
170 1 2 3 4 9 29 32 33 81 israg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( <" z x C "> e. ( raG ` G ) <-> ( z .- C ) = ( z .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) )
171 169 170 mpbird
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" z x C "> e. ( raG ` G ) )
172 171 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" z x C "> e. ( raG ` G ) )
173 73 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z =/= y )
174 173 155 neeqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z =/= x )
175 132 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> ( a .- C ) = ( a .- y ) )
176 133 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> a =/= C )
177 1 2 3 149 150 153 150 151 175 176 tgcgrneq
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> a =/= y )
178 177 necomd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> y =/= a )
179 136 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z e. ( a L y ) )
180 1 3 4 149 151 150 159 178 179 lncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z e. ( y L a ) )
181 155 oveq1d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> ( y L a ) = ( x L a ) )
182 180 181 eleqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> z e. ( x L a ) )
183 182 orcd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> ( z e. ( x L a ) \/ x = a ) )
184 1 2 3 4 9 149 159 158 153 150 172 174 183 ragcol
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" a x C "> e. ( raG ` G ) )
185 1 2 3 4 9 149 150 158 153 184 ragcom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" C x a "> e. ( raG ` G ) )
186 157 185 eqeltrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" C y a "> e. ( raG ` G ) )
187 65 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> C =/= y )
188 1 2 3 29 81 36 30 85 tgbtwncom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> p e. ( y I C ) )
189 1 4 3 29 30 36 81 188 btwncolg3
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( C e. ( y L p ) \/ y = p ) )
190 189 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> ( C e. ( y L p ) \/ y = p ) )
191 1 2 3 4 9 149 153 151 150 152 186 187 190 ragcol
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" p y a "> e. ( raG ` G ) )
192 1 2 3 4 9 149 152 151 150 191 ragcom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" a y p "> e. ( raG ` G ) )
193 97 ad2antrr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> <" a p y "> e. ( raG ` G ) )
194 1 2 3 4 9 149 150 151 152 192 193 ragflat
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> y = p )
195 71 adantr
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> y =/= p )
196 195 neneqd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) /\ y = x ) -> -. y = p )
197 194 196 pm2.65da
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> -. y = x )
198 197 neqned
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> y =/= x )
199 124 oveq2d
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- d ) = ( y .- ( ( ( pInvG ` G ) ` x ) ` C ) ) )
200 122 199 eqtrd
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( y .- C ) = ( y .- ( ( ( pInvG ` G ) ` x ) ` C ) ) )
201 1 2 3 4 9 29 30 33 81 israg
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( <" y x C "> e. ( raG ` G ) <-> ( y .- C ) = ( y .- ( ( ( pInvG ` G ) ` x ) ` C ) ) ) )
202 200 201 mpbird
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" y x C "> e. ( raG ` G ) )
203 1 2 3 4 9 29 30 33 81 202 ragcom
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> <" C x y "> e. ( raG ` G ) )
204 1 2 3 4 29 145 129 147 148 59 144 198 203 ragperp
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) /\ ( x e. P /\ d = ( ( ( pInvG ` G ) ` x ) ` C ) ) ) -> ( C L x ) ( perpG ` G ) A )
205 28 141 204 reximssdv
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) /\ d e. P ) /\ ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
206 1 2 3 14 79 24 24 19 axtgsegcon
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> E. d e. P ( y e. ( ( ( ( pInvG ` G ) ` z ) ` q ) I d ) /\ ( y .- d ) = ( y .- C ) ) )
207 205 206 r19.29a
 |-  ( ( ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) /\ q e. P ) /\ ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
208 1 2 3 13 34 23 23 46 axtgsegcon
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> E. q e. P ( y e. ( p I q ) /\ ( y .- q ) = ( y .- a ) ) )
209 207 208 r19.29a
 |-  ( ( ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) /\ z e. P ) /\ ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
210 simplr
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> p e. P )
211 1 2 3 12 45 22 22 210 axtgsegcon
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> E. z e. P ( y e. ( a I z ) /\ ( y .- z ) = ( y .- p ) ) )
212 209 211 r19.29a
 |-  ( ( ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) /\ p e. P ) /\ C = ( ( ( pInvG ` G ) ` p ) ` y ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
213 simplr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> y e. P )
214 simprr
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> ( a .- y ) = ( a .- C ) )
215 1 2 3 4 9 11 67 213 18 44 214 midexlem
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> E. p e. P C = ( ( ( pInvG ` G ) ` p ) ` y ) )
216 212 215 r19.29a
 |-  ( ( ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) /\ y e. P ) /\ ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
217 1 2 3 10 48 43 43 17 axtgsegcon
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> E. y e. P ( a e. ( b I y ) /\ ( a .- y ) = ( a .- C ) ) )
218 216 217 r19.29a
 |-  ( ( ( ( ph /\ a e. P ) /\ b e. P ) /\ ( A = ( a L b ) /\ a =/= b ) ) -> E. x e. A ( C L x ) ( perpG ` G ) A )
219 1 3 4 5 6 tgisline
 |-  ( ph -> E. a e. P E. b e. P ( A = ( a L b ) /\ a =/= b ) )
220 218 219 r19.29vva
 |-  ( ph -> E. x e. A ( C L x ) ( perpG ` G ) A )