| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isperp.p |
|- P = ( Base ` G ) |
| 2 |
|
isperp.d |
|- .- = ( dist ` G ) |
| 3 |
|
isperp.i |
|- I = ( Itv ` G ) |
| 4 |
|
isperp.l |
|- L = ( LineG ` G ) |
| 5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
| 6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
| 7 |
|
footne.x |
|- ( ph -> X e. A ) |
| 8 |
|
footne.y |
|- ( ph -> Y e. P ) |
| 9 |
|
footne.1 |
|- ( ph -> ( X L Y ) ( perpG ` G ) A ) |
| 10 |
5
|
adantr |
|- ( ( ph /\ Y e. A ) -> G e. TarskiG ) |
| 11 |
6
|
adantr |
|- ( ( ph /\ Y e. A ) -> A e. ran L ) |
| 12 |
4 5 9
|
perpln1 |
|- ( ph -> ( X L Y ) e. ran L ) |
| 13 |
12
|
adantr |
|- ( ( ph /\ Y e. A ) -> ( X L Y ) e. ran L ) |
| 14 |
1 2 3 4 5 12 6 9
|
perpneq |
|- ( ph -> ( X L Y ) =/= A ) |
| 15 |
14
|
necomd |
|- ( ph -> A =/= ( X L Y ) ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ Y e. A ) -> A =/= ( X L Y ) ) |
| 17 |
7
|
adantr |
|- ( ( ph /\ Y e. A ) -> X e. A ) |
| 18 |
1 4 3 5 6 7
|
tglnpt |
|- ( ph -> X e. P ) |
| 19 |
1 3 4 5 18 8 12
|
tglnne |
|- ( ph -> X =/= Y ) |
| 20 |
1 3 4 5 18 8 19
|
tglinerflx1 |
|- ( ph -> X e. ( X L Y ) ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ Y e. A ) -> X e. ( X L Y ) ) |
| 22 |
17 21
|
elind |
|- ( ( ph /\ Y e. A ) -> X e. ( A i^i ( X L Y ) ) ) |
| 23 |
|
simpr |
|- ( ( ph /\ Y e. A ) -> Y e. A ) |
| 24 |
1 3 4 5 18 8 19
|
tglinerflx2 |
|- ( ph -> Y e. ( X L Y ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ Y e. A ) -> Y e. ( X L Y ) ) |
| 26 |
23 25
|
elind |
|- ( ( ph /\ Y e. A ) -> Y e. ( A i^i ( X L Y ) ) ) |
| 27 |
1 3 4 10 11 13 16 22 26
|
tglineineq |
|- ( ( ph /\ Y e. A ) -> X = Y ) |
| 28 |
19
|
adantr |
|- ( ( ph /\ Y e. A ) -> X =/= Y ) |
| 29 |
27 28
|
pm2.21ddne |
|- ( ( ph /\ Y e. A ) -> -. Y e. A ) |
| 30 |
29
|
pm2.01da |
|- ( ph -> -. Y e. A ) |