Step |
Hyp |
Ref |
Expression |
1 |
|
isperp.p |
|- P = ( Base ` G ) |
2 |
|
isperp.d |
|- .- = ( dist ` G ) |
3 |
|
isperp.i |
|- I = ( Itv ` G ) |
4 |
|
isperp.l |
|- L = ( LineG ` G ) |
5 |
|
isperp.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
isperp.a |
|- ( ph -> A e. ran L ) |
7 |
|
footne.x |
|- ( ph -> X e. A ) |
8 |
|
footne.y |
|- ( ph -> Y e. P ) |
9 |
|
footne.1 |
|- ( ph -> ( X L Y ) ( perpG ` G ) A ) |
10 |
5
|
adantr |
|- ( ( ph /\ Y e. A ) -> G e. TarskiG ) |
11 |
6
|
adantr |
|- ( ( ph /\ Y e. A ) -> A e. ran L ) |
12 |
4 5 9
|
perpln1 |
|- ( ph -> ( X L Y ) e. ran L ) |
13 |
12
|
adantr |
|- ( ( ph /\ Y e. A ) -> ( X L Y ) e. ran L ) |
14 |
1 2 3 4 5 12 6 9
|
perpneq |
|- ( ph -> ( X L Y ) =/= A ) |
15 |
14
|
necomd |
|- ( ph -> A =/= ( X L Y ) ) |
16 |
15
|
adantr |
|- ( ( ph /\ Y e. A ) -> A =/= ( X L Y ) ) |
17 |
7
|
adantr |
|- ( ( ph /\ Y e. A ) -> X e. A ) |
18 |
1 4 3 5 6 7
|
tglnpt |
|- ( ph -> X e. P ) |
19 |
1 3 4 5 18 8 12
|
tglnne |
|- ( ph -> X =/= Y ) |
20 |
1 3 4 5 18 8 19
|
tglinerflx1 |
|- ( ph -> X e. ( X L Y ) ) |
21 |
20
|
adantr |
|- ( ( ph /\ Y e. A ) -> X e. ( X L Y ) ) |
22 |
17 21
|
elind |
|- ( ( ph /\ Y e. A ) -> X e. ( A i^i ( X L Y ) ) ) |
23 |
|
simpr |
|- ( ( ph /\ Y e. A ) -> Y e. A ) |
24 |
1 3 4 5 18 8 19
|
tglinerflx2 |
|- ( ph -> Y e. ( X L Y ) ) |
25 |
24
|
adantr |
|- ( ( ph /\ Y e. A ) -> Y e. ( X L Y ) ) |
26 |
23 25
|
elind |
|- ( ( ph /\ Y e. A ) -> Y e. ( A i^i ( X L Y ) ) ) |
27 |
1 3 4 10 11 13 16 22 26
|
tglineineq |
|- ( ( ph /\ Y e. A ) -> X = Y ) |
28 |
19
|
adantr |
|- ( ( ph /\ Y e. A ) -> X =/= Y ) |
29 |
27 28
|
pm2.21ddne |
|- ( ( ph /\ Y e. A ) -> -. Y e. A ) |
30 |
29
|
pm2.01da |
|- ( ph -> -. Y e. A ) |