Step |
Hyp |
Ref |
Expression |
1 |
|
imassrn |
|- ( `' F " a ) C_ ran `' F |
2 |
|
dfdm4 |
|- dom F = ran `' F |
3 |
|
fof |
|- ( F : A -onto-> B -> F : A --> B ) |
4 |
3
|
fdmd |
|- ( F : A -onto-> B -> dom F = A ) |
5 |
2 4
|
eqtr3id |
|- ( F : A -onto-> B -> ran `' F = A ) |
6 |
1 5
|
sseqtrid |
|- ( F : A -onto-> B -> ( `' F " a ) C_ A ) |
7 |
6
|
adantl |
|- ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) C_ A ) |
8 |
|
cnvexg |
|- ( F e. V -> `' F e. _V ) |
9 |
8
|
adantr |
|- ( ( F e. V /\ F : A -onto-> B ) -> `' F e. _V ) |
10 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " a ) e. _V ) |
11 |
|
elpwg |
|- ( ( `' F " a ) e. _V -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) |
12 |
9 10 11
|
3syl |
|- ( ( F e. V /\ F : A -onto-> B ) -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) |
13 |
7 12
|
mpbird |
|- ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) e. ~P A ) |
14 |
13
|
a1d |
|- ( ( F e. V /\ F : A -onto-> B ) -> ( a e. ~P B -> ( `' F " a ) e. ~P A ) ) |
15 |
|
imaeq2 |
|- ( ( `' F " a ) = ( `' F " b ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) |
16 |
15
|
adantl |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) |
17 |
|
simpllr |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> F : A -onto-> B ) |
18 |
|
simplrl |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a e. ~P B ) |
19 |
18
|
elpwid |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a C_ B ) |
20 |
|
foimacnv |
|- ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) |
21 |
17 19 20
|
syl2anc |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = a ) |
22 |
|
simplrr |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b e. ~P B ) |
23 |
22
|
elpwid |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b C_ B ) |
24 |
|
foimacnv |
|- ( ( F : A -onto-> B /\ b C_ B ) -> ( F " ( `' F " b ) ) = b ) |
25 |
17 23 24
|
syl2anc |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " b ) ) = b ) |
26 |
16 21 25
|
3eqtr3d |
|- ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a = b ) |
27 |
26
|
ex |
|- ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) -> a = b ) ) |
28 |
|
imaeq2 |
|- ( a = b -> ( `' F " a ) = ( `' F " b ) ) |
29 |
27 28
|
impbid1 |
|- ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) |
30 |
29
|
ex |
|- ( ( F e. V /\ F : A -onto-> B ) -> ( ( a e. ~P B /\ b e. ~P B ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) ) |
31 |
|
rnexg |
|- ( F e. V -> ran F e. _V ) |
32 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
33 |
32
|
eleq1d |
|- ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) |
34 |
31 33
|
syl5ibcom |
|- ( F e. V -> ( F : A -onto-> B -> B e. _V ) ) |
35 |
34
|
imp |
|- ( ( F e. V /\ F : A -onto-> B ) -> B e. _V ) |
36 |
35
|
pwexd |
|- ( ( F e. V /\ F : A -onto-> B ) -> ~P B e. _V ) |
37 |
|
dmfex |
|- ( ( F e. V /\ F : A --> B ) -> A e. _V ) |
38 |
3 37
|
sylan2 |
|- ( ( F e. V /\ F : A -onto-> B ) -> A e. _V ) |
39 |
38
|
pwexd |
|- ( ( F e. V /\ F : A -onto-> B ) -> ~P A e. _V ) |
40 |
14 30 36 39
|
dom3d |
|- ( ( F e. V /\ F : A -onto-> B ) -> ~P B ~<_ ~P A ) |