| Step | Hyp | Ref | Expression | 
						
							| 1 |  | imassrn |  |-  ( `' F " a ) C_ ran `' F | 
						
							| 2 |  | dfdm4 |  |-  dom F = ran `' F | 
						
							| 3 |  | fof |  |-  ( F : A -onto-> B -> F : A --> B ) | 
						
							| 4 | 3 | fdmd |  |-  ( F : A -onto-> B -> dom F = A ) | 
						
							| 5 | 2 4 | eqtr3id |  |-  ( F : A -onto-> B -> ran `' F = A ) | 
						
							| 6 | 1 5 | sseqtrid |  |-  ( F : A -onto-> B -> ( `' F " a ) C_ A ) | 
						
							| 7 | 6 | adantl |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) C_ A ) | 
						
							| 8 |  | cnvexg |  |-  ( F e. V -> `' F e. _V ) | 
						
							| 9 | 8 | adantr |  |-  ( ( F e. V /\ F : A -onto-> B ) -> `' F e. _V ) | 
						
							| 10 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " a ) e. _V ) | 
						
							| 11 |  | elpwg |  |-  ( ( `' F " a ) e. _V -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) | 
						
							| 12 | 9 10 11 | 3syl |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ( ( `' F " a ) e. ~P A <-> ( `' F " a ) C_ A ) ) | 
						
							| 13 | 7 12 | mpbird |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ( `' F " a ) e. ~P A ) | 
						
							| 14 | 13 | a1d |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ( a e. ~P B -> ( `' F " a ) e. ~P A ) ) | 
						
							| 15 |  | imaeq2 |  |-  ( ( `' F " a ) = ( `' F " b ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = ( F " ( `' F " b ) ) ) | 
						
							| 17 |  | simpllr |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> F : A -onto-> B ) | 
						
							| 18 |  | simplrl |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a e. ~P B ) | 
						
							| 19 | 18 | elpwid |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a C_ B ) | 
						
							| 20 |  | foimacnv |  |-  ( ( F : A -onto-> B /\ a C_ B ) -> ( F " ( `' F " a ) ) = a ) | 
						
							| 21 | 17 19 20 | syl2anc |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " a ) ) = a ) | 
						
							| 22 |  | simplrr |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b e. ~P B ) | 
						
							| 23 | 22 | elpwid |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> b C_ B ) | 
						
							| 24 |  | foimacnv |  |-  ( ( F : A -onto-> B /\ b C_ B ) -> ( F " ( `' F " b ) ) = b ) | 
						
							| 25 | 17 23 24 | syl2anc |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> ( F " ( `' F " b ) ) = b ) | 
						
							| 26 | 16 21 25 | 3eqtr3d |  |-  ( ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) /\ ( `' F " a ) = ( `' F " b ) ) -> a = b ) | 
						
							| 27 | 26 | ex |  |-  ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) -> a = b ) ) | 
						
							| 28 |  | imaeq2 |  |-  ( a = b -> ( `' F " a ) = ( `' F " b ) ) | 
						
							| 29 | 27 28 | impbid1 |  |-  ( ( ( F e. V /\ F : A -onto-> B ) /\ ( a e. ~P B /\ b e. ~P B ) ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) | 
						
							| 30 | 29 | ex |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ( ( a e. ~P B /\ b e. ~P B ) -> ( ( `' F " a ) = ( `' F " b ) <-> a = b ) ) ) | 
						
							| 31 |  | rnexg |  |-  ( F e. V -> ran F e. _V ) | 
						
							| 32 |  | forn |  |-  ( F : A -onto-> B -> ran F = B ) | 
						
							| 33 | 32 | eleq1d |  |-  ( F : A -onto-> B -> ( ran F e. _V <-> B e. _V ) ) | 
						
							| 34 | 31 33 | syl5ibcom |  |-  ( F e. V -> ( F : A -onto-> B -> B e. _V ) ) | 
						
							| 35 | 34 | imp |  |-  ( ( F e. V /\ F : A -onto-> B ) -> B e. _V ) | 
						
							| 36 | 35 | pwexd |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ~P B e. _V ) | 
						
							| 37 |  | dmfex |  |-  ( ( F e. V /\ F : A --> B ) -> A e. _V ) | 
						
							| 38 | 3 37 | sylan2 |  |-  ( ( F e. V /\ F : A -onto-> B ) -> A e. _V ) | 
						
							| 39 | 38 | pwexd |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ~P A e. _V ) | 
						
							| 40 | 14 30 36 39 | dom3d |  |-  ( ( F e. V /\ F : A -onto-> B ) -> ~P B ~<_ ~P A ) |