Step |
Hyp |
Ref |
Expression |
1 |
|
funres |
|- ( Fun F -> Fun ( F |` A ) ) |
2 |
1
|
anim1i |
|- ( ( Fun F /\ A C_ dom F ) -> ( Fun ( F |` A ) /\ A C_ dom F ) ) |
3 |
|
df-fn |
|- ( ( F |` A ) Fn A <-> ( Fun ( F |` A ) /\ dom ( F |` A ) = A ) ) |
4 |
|
df-ima |
|- ( F " A ) = ran ( F |` A ) |
5 |
4
|
eqcomi |
|- ran ( F |` A ) = ( F " A ) |
6 |
|
df-fo |
|- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( ( F |` A ) Fn A /\ ran ( F |` A ) = ( F " A ) ) ) |
7 |
5 6
|
mpbiran2 |
|- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( F |` A ) Fn A ) |
8 |
|
ssdmres |
|- ( A C_ dom F <-> dom ( F |` A ) = A ) |
9 |
8
|
anbi2i |
|- ( ( Fun ( F |` A ) /\ A C_ dom F ) <-> ( Fun ( F |` A ) /\ dom ( F |` A ) = A ) ) |
10 |
3 7 9
|
3bitr4i |
|- ( ( F |` A ) : A -onto-> ( F " A ) <-> ( Fun ( F |` A ) /\ A C_ dom F ) ) |
11 |
2 10
|
sylibr |
|- ( ( Fun F /\ A C_ dom F ) -> ( F |` A ) : A -onto-> ( F " A ) ) |