Step |
Hyp |
Ref |
Expression |
1 |
|
fofn |
|- ( F : A -onto-> B -> F Fn A ) |
2 |
|
fofn |
|- ( G : C -onto-> D -> G Fn C ) |
3 |
1 2
|
anim12i |
|- ( ( F : A -onto-> B /\ G : C -onto-> D ) -> ( F Fn A /\ G Fn C ) ) |
4 |
|
fnun |
|- ( ( ( F Fn A /\ G Fn C ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) |
5 |
3 4
|
sylan |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) Fn ( A u. C ) ) |
6 |
|
rnun |
|- ran ( F u. G ) = ( ran F u. ran G ) |
7 |
|
forn |
|- ( F : A -onto-> B -> ran F = B ) |
8 |
7
|
ad2antrr |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran F = B ) |
9 |
|
forn |
|- ( G : C -onto-> D -> ran G = D ) |
10 |
9
|
ad2antlr |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran G = D ) |
11 |
8 10
|
uneq12d |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( ran F u. ran G ) = ( B u. D ) ) |
12 |
6 11
|
eqtrid |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ran ( F u. G ) = ( B u. D ) ) |
13 |
|
df-fo |
|- ( ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) <-> ( ( F u. G ) Fn ( A u. C ) /\ ran ( F u. G ) = ( B u. D ) ) ) |
14 |
5 12 13
|
sylanbrc |
|- ( ( ( F : A -onto-> B /\ G : C -onto-> D ) /\ ( A i^i C ) = (/) ) -> ( F u. G ) : ( A u. C ) -onto-> ( B u. D ) ) |