Step |
Hyp |
Ref |
Expression |
1 |
|
fourierclim.f |
|- F : RR --> RR |
2 |
|
fourierclim.t |
|- T = ( 2 x. _pi ) |
3 |
|
fourierclim.per |
|- ( x e. RR -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fourierclim.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
5 |
|
fourierclim.dmdv |
|- ( ( -u _pi (,) _pi ) \ dom G ) e. Fin |
6 |
|
fourierclim.dvcn |
|- G e. ( dom G -cn-> CC ) |
7 |
|
fourierclim.rlim |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
8 |
|
fourierclim.llim |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
9 |
|
fourierclim.x |
|- X e. RR |
10 |
|
fourierclim.l |
|- L e. ( ( F |` ( -oo (,) X ) ) limCC X ) |
11 |
|
fourierclim.r |
|- R e. ( ( F |` ( X (,) +oo ) ) limCC X ) |
12 |
|
fourierclim.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
13 |
|
fourierclim.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
14 |
|
fourierclim.s |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
15 |
1
|
a1i |
|- ( T. -> F : RR --> RR ) |
16 |
3
|
adantl |
|- ( ( T. /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
17 |
5
|
a1i |
|- ( T. -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
18 |
6
|
a1i |
|- ( T. -> G e. ( dom G -cn-> CC ) ) |
19 |
7
|
adantl |
|- ( ( T. /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
20 |
8
|
adantl |
|- ( ( T. /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
21 |
9
|
a1i |
|- ( T. -> X e. RR ) |
22 |
10
|
a1i |
|- ( T. -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
23 |
11
|
a1i |
|- ( T. -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
24 |
15 2 16 4 17 18 19 20 21 22 23 12 13 14
|
fourierclimd |
|- ( T. -> seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
25 |
24
|
mptru |
|- seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) |