Step |
Hyp |
Ref |
Expression |
1 |
|
fouriercn.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fouriercn.t |
|- T = ( 2 x. _pi ) |
3 |
|
fouriercn.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fouriercn.dv |
|- ( ph -> ( RR _D F ) e. ( RR -cn-> CC ) ) |
5 |
|
fouriercn.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
6 |
|
fouriercn.x |
|- ( ph -> X e. RR ) |
7 |
|
fouriercn.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
8 |
|
fouriercn.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
9 |
5
|
dmeqi |
|- dom G = dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
10 |
|
ioossre |
|- ( -u _pi (,) _pi ) C_ RR |
11 |
|
cncff |
|- ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( RR _D F ) : RR --> CC ) |
12 |
|
fdm |
|- ( ( RR _D F ) : RR --> CC -> dom ( RR _D F ) = RR ) |
13 |
4 11 12
|
3syl |
|- ( ph -> dom ( RR _D F ) = RR ) |
14 |
10 13
|
sseqtrrid |
|- ( ph -> ( -u _pi (,) _pi ) C_ dom ( RR _D F ) ) |
15 |
|
ssdmres |
|- ( ( -u _pi (,) _pi ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) ) |
16 |
14 15
|
sylib |
|- ( ph -> dom ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) ) |
17 |
9 16
|
eqtrid |
|- ( ph -> dom G = ( -u _pi (,) _pi ) ) |
18 |
17
|
difeq2d |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) ) |
19 |
|
difid |
|- ( ( -u _pi (,) _pi ) \ ( -u _pi (,) _pi ) ) = (/) |
20 |
18 19
|
eqtrdi |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) = (/) ) |
21 |
|
0fin |
|- (/) e. Fin |
22 |
20 21
|
eqeltrdi |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
23 |
|
rescncf |
|- ( ( -u _pi (,) _pi ) C_ RR -> ( ( RR _D F ) e. ( RR -cn-> CC ) -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) ) |
24 |
10 4 23
|
mpsyl |
|- ( ph -> ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
25 |
5
|
a1i |
|- ( ph -> G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) ) |
26 |
17
|
oveq1d |
|- ( ph -> ( dom G -cn-> CC ) = ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
27 |
24 25 26
|
3eltr4d |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
28 |
|
pire |
|- _pi e. RR |
29 |
28
|
renegcli |
|- -u _pi e. RR |
30 |
28
|
rexri |
|- _pi e. RR* |
31 |
|
icossre |
|- ( ( -u _pi e. RR /\ _pi e. RR* ) -> ( -u _pi [,) _pi ) C_ RR ) |
32 |
29 30 31
|
mp2an |
|- ( -u _pi [,) _pi ) C_ RR |
33 |
|
eldifi |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. ( -u _pi [,) _pi ) ) |
34 |
32 33
|
sselid |
|- ( x e. ( ( -u _pi [,) _pi ) \ dom G ) -> x e. RR ) |
35 |
|
limcresi |
|- ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x ) |
36 |
5
|
reseq1i |
|- ( G |` ( x (,) +oo ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) |
37 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( x (,) +oo ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) |
38 |
36 37
|
eqtr2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) = ( G |` ( x (,) +oo ) ) |
39 |
38
|
oveq1i |
|- ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( x (,) +oo ) ) ) limCC x ) = ( ( G |` ( x (,) +oo ) ) limCC x ) |
40 |
35 39
|
sseqtri |
|- ( ( RR _D F ) limCC x ) C_ ( ( G |` ( x (,) +oo ) ) limCC x ) |
41 |
4
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( RR _D F ) e. ( RR -cn-> CC ) ) |
42 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
43 |
41 42
|
cnlimci |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( RR _D F ) limCC x ) ) |
44 |
40 43
|
sselid |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( x (,) +oo ) ) limCC x ) ) |
45 |
44
|
ne0d |
|- ( ( ph /\ x e. RR ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
46 |
34 45
|
sylan2 |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
47 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
48 |
|
eldifi |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. ( -u _pi (,] _pi ) ) |
49 |
47 48
|
sselid |
|- ( x e. ( ( -u _pi (,] _pi ) \ dom G ) -> x e. RR ) |
50 |
|
limcresi |
|- ( ( RR _D F ) limCC x ) C_ ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x ) |
51 |
5
|
reseq1i |
|- ( G |` ( -oo (,) x ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) |
52 |
|
resres |
|- ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( -oo (,) x ) ) = ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) |
53 |
51 52
|
eqtr2i |
|- ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) = ( G |` ( -oo (,) x ) ) |
54 |
53
|
oveq1i |
|- ( ( ( RR _D F ) |` ( ( -u _pi (,) _pi ) i^i ( -oo (,) x ) ) ) limCC x ) = ( ( G |` ( -oo (,) x ) ) limCC x ) |
55 |
50 54
|
sseqtri |
|- ( ( RR _D F ) limCC x ) C_ ( ( G |` ( -oo (,) x ) ) limCC x ) |
56 |
55 43
|
sselid |
|- ( ( ph /\ x e. RR ) -> ( ( RR _D F ) ` x ) e. ( ( G |` ( -oo (,) x ) ) limCC x ) ) |
57 |
56
|
ne0d |
|- ( ( ph /\ x e. RR ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
58 |
49 57
|
sylan2 |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
59 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
60 |
|
ax-resscn |
|- RR C_ CC |
61 |
60
|
a1i |
|- ( ph -> RR C_ CC ) |
62 |
1 61
|
fssd |
|- ( ph -> F : RR --> CC ) |
63 |
|
ssid |
|- RR C_ RR |
64 |
63
|
a1i |
|- ( ph -> RR C_ RR ) |
65 |
|
dvcn |
|- ( ( ( RR C_ CC /\ F : RR --> CC /\ RR C_ RR ) /\ dom ( RR _D F ) = RR ) -> F e. ( RR -cn-> CC ) ) |
66 |
61 62 64 13 65
|
syl31anc |
|- ( ph -> F e. ( RR -cn-> CC ) ) |
67 |
|
cncffvrn |
|- ( ( RR C_ CC /\ F e. ( RR -cn-> CC ) ) -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) ) |
68 |
61 66 67
|
syl2anc |
|- ( ph -> ( F e. ( RR -cn-> RR ) <-> F : RR --> RR ) ) |
69 |
1 68
|
mpbird |
|- ( ph -> F e. ( RR -cn-> RR ) ) |
70 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
71 |
70
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
72 |
70 71 71
|
cncfcn |
|- ( ( RR C_ CC /\ RR C_ CC ) -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
73 |
61 61 72
|
syl2anc |
|- ( ph -> ( RR -cn-> RR ) = ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
74 |
69 73
|
eleqtrd |
|- ( ph -> F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) ) |
75 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
76 |
75
|
cncnpi |
|- ( ( F e. ( ( topGen ` ran (,) ) Cn ( topGen ` ran (,) ) ) /\ X e. RR ) -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) ) |
77 |
74 6 76
|
syl2anc |
|- ( ph -> F e. ( ( ( topGen ` ran (,) ) CnP ( topGen ` ran (,) ) ) ` X ) ) |
78 |
1 2 3 5 22 27 46 58 59 77 7 8
|
fouriercnp |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( F ` X ) ) |