Step |
Hyp |
Ref |
Expression |
1 |
|
fouriercnp.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fouriercnp.t |
|- T = ( 2 x. _pi ) |
3 |
|
fouriercnp.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fouriercnp.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
5 |
|
fouriercnp.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
6 |
|
fouriercnp.dvcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
7 |
|
fouriercnp.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
8 |
|
fouriercnp.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
9 |
|
fouriercnp.j |
|- J = ( topGen ` ran (,) ) |
10 |
|
fouriercnp.cnp |
|- ( ph -> F e. ( ( J CnP J ) ` X ) ) |
11 |
|
fouriercnp.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
12 |
|
fouriercnp.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
13 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
14 |
9
|
unieqi |
|- U. J = U. ( topGen ` ran (,) ) |
15 |
13 14
|
eqtr4i |
|- RR = U. J |
16 |
15
|
cnprcl |
|- ( F e. ( ( J CnP J ) ` X ) -> X e. RR ) |
17 |
10 16
|
syl |
|- ( ph -> X e. RR ) |
18 |
|
limcresi |
|- ( F limCC X ) C_ ( ( F |` ( -oo (,) X ) ) limCC X ) |
19 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
20 |
19
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
21 |
9 20
|
eqtri |
|- J = ( ( TopOpen ` CCfld ) |`t RR ) |
22 |
21
|
oveq2i |
|- ( J CnP J ) = ( J CnP ( ( TopOpen ` CCfld ) |`t RR ) ) |
23 |
22
|
fveq1i |
|- ( ( J CnP J ) ` X ) = ( ( J CnP ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) |
24 |
10 23
|
eleqtrdi |
|- ( ph -> F e. ( ( J CnP ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) ) |
25 |
19
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
26 |
25
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
27 |
|
ax-resscn |
|- RR C_ CC |
28 |
27
|
a1i |
|- ( ph -> RR C_ CC ) |
29 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
30 |
15 29
|
cnprest2 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ F : RR --> RR /\ RR C_ CC ) -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` X ) <-> F e. ( ( J CnP ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) ) ) |
31 |
26 1 28 30
|
syl3anc |
|- ( ph -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` X ) <-> F e. ( ( J CnP ( ( TopOpen ` CCfld ) |`t RR ) ) ` X ) ) ) |
32 |
24 31
|
mpbird |
|- ( ph -> F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` X ) ) |
33 |
19 21
|
cnplimc |
|- ( ( RR C_ CC /\ X e. RR ) -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` X ) <-> ( F : RR --> CC /\ ( F ` X ) e. ( F limCC X ) ) ) ) |
34 |
27 17 33
|
sylancr |
|- ( ph -> ( F e. ( ( J CnP ( TopOpen ` CCfld ) ) ` X ) <-> ( F : RR --> CC /\ ( F ` X ) e. ( F limCC X ) ) ) ) |
35 |
32 34
|
mpbid |
|- ( ph -> ( F : RR --> CC /\ ( F ` X ) e. ( F limCC X ) ) ) |
36 |
35
|
simprd |
|- ( ph -> ( F ` X ) e. ( F limCC X ) ) |
37 |
18 36
|
sselid |
|- ( ph -> ( F ` X ) e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
38 |
|
limcresi |
|- ( F limCC X ) C_ ( ( F |` ( X (,) +oo ) ) limCC X ) |
39 |
38 36
|
sselid |
|- ( ph -> ( F ` X ) e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
40 |
1 2 3 4 5 6 7 8 17 37 39 11 12
|
fourierd |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( F ` X ) + ( F ` X ) ) / 2 ) ) |
41 |
1 17
|
ffvelrnd |
|- ( ph -> ( F ` X ) e. RR ) |
42 |
41
|
recnd |
|- ( ph -> ( F ` X ) e. CC ) |
43 |
42
|
2timesd |
|- ( ph -> ( 2 x. ( F ` X ) ) = ( ( F ` X ) + ( F ` X ) ) ) |
44 |
43
|
eqcomd |
|- ( ph -> ( ( F ` X ) + ( F ` X ) ) = ( 2 x. ( F ` X ) ) ) |
45 |
44
|
oveq1d |
|- ( ph -> ( ( ( F ` X ) + ( F ` X ) ) / 2 ) = ( ( 2 x. ( F ` X ) ) / 2 ) ) |
46 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
47 |
|
2ne0 |
|- 2 =/= 0 |
48 |
47
|
a1i |
|- ( ph -> 2 =/= 0 ) |
49 |
42 46 48
|
divcan3d |
|- ( ph -> ( ( 2 x. ( F ` X ) ) / 2 ) = ( F ` X ) ) |
50 |
40 45 49
|
3eqtrd |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( F ` X ) ) |