| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem106.f | 
							 |-  ( ph -> F : RR --> RR )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem106.t | 
							 |-  T = ( 2 x. _pi )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem106.per | 
							 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem106.g | 
							 |-  G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem106.dmdv | 
							 |-  ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem106.dvcn | 
							 |-  ( ph -> G e. ( dom G -cn-> CC ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem106.rlim | 
							 |-  ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem106.llim | 
							 |-  ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem106.x | 
							 |-  ( ph -> X e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							eqid | 
							 |-  ( k e. NN |-> { w e. ( RR ^m ( 0 ... k ) ) | ( ( ( w ` 0 ) = -u _pi /\ ( w ` k ) = _pi ) /\ A. z e. ( 0 ..^ k ) ( w ` z ) < ( w ` ( z + 1 ) ) ) } ) = ( k e. NN |-> { w e. ( RR ^m ( 0 ... k ) ) | ( ( ( w ` 0 ) = -u _pi /\ ( w ` k ) = _pi ) /\ A. z e. ( 0 ..^ k ) ( w ` z ) < ( w ` ( z + 1 ) ) ) } ) | 
						
						
							| 11 | 
							
								
							 | 
							id | 
							 |-  ( y = x -> y = x )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq2 | 
							 |-  ( y = x -> ( _pi - y ) = ( _pi - x ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							oveq1d | 
							 |-  ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) )  | 
						
						
							| 14 | 
							
								13
							 | 
							fveq2d | 
							 |-  ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							oveq1d | 
							 |-  ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) )  | 
						
						
							| 16 | 
							
								11 15
							 | 
							oveq12d | 
							 |-  ( y = x -> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							cbvmptv | 
							 |-  ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) )  | 
						
						
							| 18 | 
							
								
							 | 
							eqid | 
							 |-  ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) = ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) | 
						
						
							| 19 | 
							
								
							 | 
							eqid | 
							 |-  ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) = ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) | 
						
						
							| 20 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) ) | 
						
						
							| 21 | 
							
								20
							 | 
							cbviotavw | 
							 |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) | 
						
						
							| 22 | 
							
								1 2 3 4 5 6 7 8 9 10 17 18 19 21
							 | 
							fourierdlem102 | 
							 |-  ( ph -> ( ( ( F |` ( -oo (,) X ) ) limCC X ) =/= (/) /\ ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) )  |