| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem108.a | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem108.b | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem108.t | 
							 |-  T = ( B - A )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem108.x | 
							 |-  ( ph -> X e. RR+ )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem108.p | 
							 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem108.m | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem108.q | 
							 |-  ( ph -> Q e. ( P ` M ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem108.f | 
							 |-  ( ph -> F : RR --> CC )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem108.fper | 
							 |-  ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem108.fcn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem108.r | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 12 | 
							
								
							 | 
							fourierdlem108.l | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 13 | 
							
								
							 | 
							eqid | 
							 |-  ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = A ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 14 | 
							
								
							 | 
							oveq1 | 
							 |-  ( w = y -> ( w + ( k x. T ) ) = ( y + ( k x. T ) ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							eleq1d | 
							 |-  ( w = y -> ( ( w + ( k x. T ) ) e. ran Q <-> ( y + ( k x. T ) ) e. ran Q ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							rexbidv | 
							 |-  ( w = y -> ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. T ) ) e. ran Q ) )  | 
						
						
							| 17 | 
							
								16
							 | 
							cbvrabv | 
							 |-  { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { y e. ( ( A - X ) [,] A ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } | 
						
						
							| 18 | 
							
								17
							 | 
							uneq2i | 
							 |-  ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( A - X ) , A } u. { y e. ( ( A - X ) [,] A ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 19 | 
							
								
							 | 
							oveq1 | 
							 |-  ( l = k -> ( l x. T ) = ( k x. T ) )  | 
						
						
							| 20 | 
							
								19
							 | 
							oveq2d | 
							 |-  ( l = k -> ( w + ( l x. T ) ) = ( w + ( k x. T ) ) )  | 
						
						
							| 21 | 
							
								20
							 | 
							eleq1d | 
							 |-  ( l = k -> ( ( w + ( l x. T ) ) e. ran Q <-> ( w + ( k x. T ) ) e. ran Q ) )  | 
						
						
							| 22 | 
							
								21
							 | 
							cbvrexvw | 
							 |-  ( E. l e. ZZ ( w + ( l x. T ) ) e. ran Q <-> E. k e. ZZ ( w + ( k x. T ) ) e. ran Q )  | 
						
						
							| 23 | 
							
								22
							 | 
							rgenw | 
							 |-  A. w e. ( ( A - X ) [,] A ) ( E. l e. ZZ ( w + ( l x. T ) ) e. ran Q <-> E. k e. ZZ ( w + ( k x. T ) ) e. ran Q )  | 
						
						
							| 24 | 
							
								
							 | 
							rabbi | 
							 |-  ( A. w e. ( ( A - X ) [,] A ) ( E. l e. ZZ ( w + ( l x. T ) ) e. ran Q <-> E. k e. ZZ ( w + ( k x. T ) ) e. ran Q ) <-> { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } = { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 25 | 
							
								23 24
							 | 
							mpbi | 
							 |-  { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } = { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } | 
						
						
							| 26 | 
							
								25
							 | 
							uneq2i | 
							 |-  ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) = ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) | 
						
						
							| 27 | 
							
								26
							 | 
							fveq2i | 
							 |-  ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) = ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) | 
						
						
							| 28 | 
							
								27
							 | 
							oveq1i | 
							 |-  ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) | 
						
						
							| 29 | 
							
								
							 | 
							isoeq5 | 
							 |-  ( ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) = ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
						
							| 30 | 
							
								26 29
							 | 
							ax-mp | 
							 |-  ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) | 
						
						
							| 31 | 
							
								
							 | 
							isoeq1 | 
							 |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
						
							| 32 | 
							
								30 31
							 | 
							bitrid | 
							 |-  ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) | 
						
						
							| 33 | 
							
								32
							 | 
							cbviotavw | 
							 |-  ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. l e. ZZ ( w + ( l x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( A - X ) , A } u. { w e. ( ( A - X ) [,] A ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) | 
						
						
							| 34 | 
							
								
							 | 
							id | 
							 |-  ( w = x -> w = x )  | 
						
						
							| 35 | 
							
								
							 | 
							oveq2 | 
							 |-  ( w = x -> ( B - w ) = ( B - x ) )  | 
						
						
							| 36 | 
							
								35
							 | 
							oveq1d | 
							 |-  ( w = x -> ( ( B - w ) / T ) = ( ( B - x ) / T ) )  | 
						
						
							| 37 | 
							
								36
							 | 
							fveq2d | 
							 |-  ( w = x -> ( |_ ` ( ( B - w ) / T ) ) = ( |_ ` ( ( B - x ) / T ) ) )  | 
						
						
							| 38 | 
							
								37
							 | 
							oveq1d | 
							 |-  ( w = x -> ( ( |_ ` ( ( B - w ) / T ) ) x. T ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) )  | 
						
						
							| 39 | 
							
								34 38
							 | 
							oveq12d | 
							 |-  ( w = x -> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) )  | 
						
						
							| 40 | 
							
								39
							 | 
							cbvmptv | 
							 |-  ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) )  | 
						
						
							| 41 | 
							
								
							 | 
							eqeq1 | 
							 |-  ( w = y -> ( w = B <-> y = B ) )  | 
						
						
							| 42 | 
							
								
							 | 
							id | 
							 |-  ( w = y -> w = y )  | 
						
						
							| 43 | 
							
								41 42
							 | 
							ifbieq2d | 
							 |-  ( w = y -> if ( w = B , A , w ) = if ( y = B , A , y ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							cbvmptv | 
							 |-  ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) )  | 
						
						
							| 45 | 
							
								
							 | 
							fveq2 | 
							 |-  ( z = x -> ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) = ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) )  | 
						
						
							| 46 | 
							
								45
							 | 
							fveq2d | 
							 |-  ( z = x -> ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) = ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) )  | 
						
						
							| 47 | 
							
								46
							 | 
							breq2d | 
							 |-  ( z = x -> ( ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) <-> ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) ) )  | 
						
						
							| 48 | 
							
								47
							 | 
							rabbidv | 
							 |-  ( z = x -> { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) } = { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } ) | 
						
						
							| 49 | 
							
								
							 | 
							fveq2 | 
							 |-  ( j = i -> ( Q ` j ) = ( Q ` i ) )  | 
						
						
							| 50 | 
							
								49
							 | 
							breq1d | 
							 |-  ( j = i -> ( ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) <-> ( Q ` i ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) ) )  | 
						
						
							| 51 | 
							
								50
							 | 
							cbvrabv | 
							 |-  { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } = { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } | 
						
						
							| 52 | 
							
								48 51
							 | 
							eqtrdi | 
							 |-  ( z = x -> { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) } = { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } ) | 
						
						
							| 53 | 
							
								52
							 | 
							supeq1d | 
							 |-  ( z = x -> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) } , RR , < ) = sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) ) | 
						
						
							| 54 | 
							
								53
							 | 
							cbvmptv | 
							 |-  ( z e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` z ) ) } , RR , < ) ) = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( ( w e. ( A (,] B ) |-> if ( w = B , A , w ) ) ` ( ( w e. RR |-> ( w + ( ( |_ ` ( ( B - w ) / T ) ) x. T ) ) ) ` x ) ) } , RR , < ) ) | 
						
						
							| 55 | 
							
								1 2 3 4 5 6 7 8 9 10 11 12 13 18 28 33 40 44 54
							 | 
							fourierdlem107 | 
							 |-  ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x )  |