| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem109.a |
|- ( ph -> A e. RR ) |
| 2 |
|
fourierdlem109.b |
|- ( ph -> B e. RR ) |
| 3 |
|
fourierdlem109.t |
|- T = ( B - A ) |
| 4 |
|
fourierdlem109.x |
|- ( ph -> X e. RR ) |
| 5 |
|
fourierdlem109.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 6 |
|
fourierdlem109.m |
|- ( ph -> M e. NN ) |
| 7 |
|
fourierdlem109.q |
|- ( ph -> Q e. ( P ` M ) ) |
| 8 |
|
fourierdlem109.f |
|- ( ph -> F : RR --> CC ) |
| 9 |
|
fourierdlem109.fper |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 10 |
|
fourierdlem109.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 11 |
|
fourierdlem109.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 12 |
|
fourierdlem109.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 13 |
|
fourierdlem109.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 14 |
|
fourierdlem109.h |
|- H = ( { ( A - X ) , ( B - X ) } u. { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) |
| 15 |
|
fourierdlem109.n |
|- N = ( ( # ` H ) - 1 ) |
| 16 |
|
fourierdlem109.16 |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , H ) ) |
| 17 |
|
fourierdlem109.17 |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
| 18 |
|
fourierdlem109.18 |
|- J = ( y e. ( A (,] B ) |-> if ( y = B , A , y ) ) |
| 19 |
|
fourierdlem109.19 |
|- I = ( x e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) |
| 20 |
1
|
adantr |
|- ( ( ph /\ 0 < X ) -> A e. RR ) |
| 21 |
2
|
adantr |
|- ( ( ph /\ 0 < X ) -> B e. RR ) |
| 22 |
4
|
adantr |
|- ( ( ph /\ 0 < X ) -> X e. RR ) |
| 23 |
|
simpr |
|- ( ( ph /\ 0 < X ) -> 0 < X ) |
| 24 |
22 23
|
elrpd |
|- ( ( ph /\ 0 < X ) -> X e. RR+ ) |
| 25 |
6
|
adantr |
|- ( ( ph /\ 0 < X ) -> M e. NN ) |
| 26 |
7
|
adantr |
|- ( ( ph /\ 0 < X ) -> Q e. ( P ` M ) ) |
| 27 |
8
|
adantr |
|- ( ( ph /\ 0 < X ) -> F : RR --> CC ) |
| 28 |
9
|
adantlr |
|- ( ( ( ph /\ 0 < X ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 29 |
10
|
adantlr |
|- ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 30 |
11
|
adantlr |
|- ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 31 |
12
|
adantlr |
|- ( ( ( ph /\ 0 < X ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 32 |
20 21 3 24 5 25 26 27 28 29 30 31
|
fourierdlem108 |
|- ( ( ph /\ 0 < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 33 |
|
oveq2 |
|- ( X = 0 -> ( A - X ) = ( A - 0 ) ) |
| 34 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 35 |
34
|
subid1d |
|- ( ph -> ( A - 0 ) = A ) |
| 36 |
33 35
|
sylan9eqr |
|- ( ( ph /\ X = 0 ) -> ( A - X ) = A ) |
| 37 |
|
oveq2 |
|- ( X = 0 -> ( B - X ) = ( B - 0 ) ) |
| 38 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 39 |
38
|
subid1d |
|- ( ph -> ( B - 0 ) = B ) |
| 40 |
37 39
|
sylan9eqr |
|- ( ( ph /\ X = 0 ) -> ( B - X ) = B ) |
| 41 |
36 40
|
oveq12d |
|- ( ( ph /\ X = 0 ) -> ( ( A - X ) [,] ( B - X ) ) = ( A [,] B ) ) |
| 42 |
41
|
itgeq1d |
|- ( ( ph /\ X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 43 |
42
|
adantlr |
|- ( ( ( ph /\ -. 0 < X ) /\ X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 44 |
|
simpll |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> ph ) |
| 45 |
44 4
|
syl |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X e. RR ) |
| 46 |
|
0red |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> 0 e. RR ) |
| 47 |
|
simpr |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> -. X = 0 ) |
| 48 |
47
|
neqned |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X =/= 0 ) |
| 49 |
|
simplr |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> -. 0 < X ) |
| 50 |
45 46 48 49
|
lttri5d |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> X < 0 ) |
| 51 |
4
|
recnd |
|- ( ph -> X e. CC ) |
| 52 |
34 51
|
subcld |
|- ( ph -> ( A - X ) e. CC ) |
| 53 |
52 51
|
subnegd |
|- ( ph -> ( ( A - X ) - -u X ) = ( ( A - X ) + X ) ) |
| 54 |
34 51
|
npcand |
|- ( ph -> ( ( A - X ) + X ) = A ) |
| 55 |
53 54
|
eqtrd |
|- ( ph -> ( ( A - X ) - -u X ) = A ) |
| 56 |
38 51
|
subcld |
|- ( ph -> ( B - X ) e. CC ) |
| 57 |
56 51
|
subnegd |
|- ( ph -> ( ( B - X ) - -u X ) = ( ( B - X ) + X ) ) |
| 58 |
38 51
|
npcand |
|- ( ph -> ( ( B - X ) + X ) = B ) |
| 59 |
57 58
|
eqtrd |
|- ( ph -> ( ( B - X ) - -u X ) = B ) |
| 60 |
55 59
|
oveq12d |
|- ( ph -> ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) = ( A [,] B ) ) |
| 61 |
60
|
eqcomd |
|- ( ph -> ( A [,] B ) = ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ) |
| 62 |
61
|
itgeq1d |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x ) |
| 63 |
62
|
adantr |
|- ( ( ph /\ X < 0 ) -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x ) |
| 64 |
1 4
|
resubcld |
|- ( ph -> ( A - X ) e. RR ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ X < 0 ) -> ( A - X ) e. RR ) |
| 66 |
2 4
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ X < 0 ) -> ( B - X ) e. RR ) |
| 68 |
|
eqid |
|- ( ( B - X ) - ( A - X ) ) = ( ( B - X ) - ( A - X ) ) |
| 69 |
4
|
renegcld |
|- ( ph -> -u X e. RR ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ X < 0 ) -> -u X e. RR ) |
| 71 |
4
|
lt0neg1d |
|- ( ph -> ( X < 0 <-> 0 < -u X ) ) |
| 72 |
71
|
biimpa |
|- ( ( ph /\ X < 0 ) -> 0 < -u X ) |
| 73 |
70 72
|
elrpd |
|- ( ( ph /\ X < 0 ) -> -u X e. RR+ ) |
| 74 |
|
fveq2 |
|- ( i = j -> ( p ` i ) = ( p ` j ) ) |
| 75 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
| 76 |
75
|
fveq2d |
|- ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) |
| 77 |
74 76
|
breq12d |
|- ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
| 78 |
77
|
cbvralvw |
|- ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) |
| 79 |
78
|
anbi2i |
|- ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
| 80 |
79
|
a1i |
|- ( p e. ( RR ^m ( 0 ... m ) ) -> ( ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) |
| 81 |
80
|
rabbiia |
|- { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } |
| 82 |
81
|
mpteq2i |
|- ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 83 |
13 82
|
eqtri |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A - X ) /\ ( p ` m ) = ( B - X ) ) /\ A. j e. ( 0 ..^ m ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
| 84 |
5 6 7
|
fourierdlem11 |
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |
| 85 |
84
|
simp3d |
|- ( ph -> A < B ) |
| 86 |
1 2 4 85
|
ltsub1dd |
|- ( ph -> ( A - X ) < ( B - X ) ) |
| 87 |
3 5 6 7 64 66 86 13 14 15 16
|
fourierdlem54 |
|- ( ph -> ( ( N e. NN /\ S e. ( O ` N ) ) /\ S Isom < , < ( ( 0 ... N ) , H ) ) ) |
| 88 |
87
|
simpld |
|- ( ph -> ( N e. NN /\ S e. ( O ` N ) ) ) |
| 89 |
88
|
simpld |
|- ( ph -> N e. NN ) |
| 90 |
89
|
adantr |
|- ( ( ph /\ X < 0 ) -> N e. NN ) |
| 91 |
88
|
simprd |
|- ( ph -> S e. ( O ` N ) ) |
| 92 |
91
|
adantr |
|- ( ( ph /\ X < 0 ) -> S e. ( O ` N ) ) |
| 93 |
8
|
adantr |
|- ( ( ph /\ X < 0 ) -> F : RR --> CC ) |
| 94 |
38 34 51
|
nnncan2d |
|- ( ph -> ( ( B - X ) - ( A - X ) ) = ( B - A ) ) |
| 95 |
94 3
|
eqtr4di |
|- ( ph -> ( ( B - X ) - ( A - X ) ) = T ) |
| 96 |
95
|
oveq2d |
|- ( ph -> ( x + ( ( B - X ) - ( A - X ) ) ) = ( x + T ) ) |
| 97 |
96
|
adantr |
|- ( ( ph /\ x e. RR ) -> ( x + ( ( B - X ) - ( A - X ) ) ) = ( x + T ) ) |
| 98 |
97
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` ( x + T ) ) ) |
| 99 |
98 9
|
eqtrd |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` x ) ) |
| 100 |
99
|
adantlr |
|- ( ( ( ph /\ X < 0 ) /\ x e. RR ) -> ( F ` ( x + ( ( B - X ) - ( A - X ) ) ) ) = ( F ` x ) ) |
| 101 |
6
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> M e. NN ) |
| 102 |
7
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) |
| 103 |
8
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> F : RR --> CC ) |
| 104 |
9
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 105 |
10
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 106 |
64
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( A - X ) e. RR ) |
| 107 |
64
|
rexrd |
|- ( ph -> ( A - X ) e. RR* ) |
| 108 |
|
pnfxr |
|- +oo e. RR* |
| 109 |
108
|
a1i |
|- ( ph -> +oo e. RR* ) |
| 110 |
66
|
ltpnfd |
|- ( ph -> ( B - X ) < +oo ) |
| 111 |
107 109 66 86 110
|
eliood |
|- ( ph -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) |
| 112 |
111
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( B - X ) e. ( ( A - X ) (,) +oo ) ) |
| 113 |
|
oveq1 |
|- ( x = y -> ( x + ( k x. T ) ) = ( y + ( k x. T ) ) ) |
| 114 |
113
|
eleq1d |
|- ( x = y -> ( ( x + ( k x. T ) ) e. ran Q <-> ( y + ( k x. T ) ) e. ran Q ) ) |
| 115 |
114
|
rexbidv |
|- ( x = y -> ( E. k e. ZZ ( x + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( y + ( k x. T ) ) e. ran Q ) ) |
| 116 |
115
|
cbvrabv |
|- { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } = { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } |
| 117 |
116
|
uneq2i |
|- ( { ( A - X ) , ( B - X ) } u. { x e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) |
| 118 |
14 117
|
eqtri |
|- H = ( { ( A - X ) , ( B - X ) } u. { y e. ( ( A - X ) [,] ( B - X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) |
| 119 |
|
simpr |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> j e. ( 0 ..^ N ) ) |
| 120 |
|
eqid |
|- ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) = ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) |
| 121 |
|
eqid |
|- ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) = ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) |
| 122 |
|
eqid |
|- ( y e. ( ( ( J ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) = ( y e. ( ( ( J ` ( E ` ( S ` j ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) (,) ( ( E ` ( S ` ( j + 1 ) ) ) + ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) |-> ( ( F |` ( ( J ` ( E ` ( S ` j ) ) ) (,) ( E ` ( S ` ( j + 1 ) ) ) ) ) ` ( y - ( ( S ` ( j + 1 ) ) - ( E ` ( S ` ( j + 1 ) ) ) ) ) ) ) |
| 123 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
| 124 |
123
|
breq1d |
|- ( j = i -> ( ( Q ` j ) <_ ( J ` ( E ` x ) ) <-> ( Q ` i ) <_ ( J ` ( E ` x ) ) ) ) |
| 125 |
124
|
cbvrabv |
|- { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } = { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } |
| 126 |
125
|
supeq1i |
|- sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) = sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) |
| 127 |
126
|
mpteq2i |
|- ( x e. RR |-> sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) |
| 128 |
19 127
|
eqtri |
|- I = ( x e. RR |-> sup ( { i e. ( 0 ..^ M ) | ( Q ` i ) <_ ( J ` ( E ` x ) ) } , RR , < ) ) |
| 129 |
5 3 101 102 103 104 105 106 112 13 118 15 16 17 18 119 120 121 122 128
|
fourierdlem90 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
| 130 |
129
|
adantlr |
|- ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
| 131 |
11
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 132 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> R ) = ( i e. ( 0 ..^ M ) |-> R ) |
| 133 |
5 3 101 102 103 104 105 131 106 112 13 118 15 16 17 18 119 120 128 132
|
fourierdlem89 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( J ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( J ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
| 134 |
133
|
adantlr |
|- ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> if ( ( J ` ( E ` ( S ` j ) ) ) = ( Q ` ( I ` ( S ` j ) ) ) , ( ( i e. ( 0 ..^ M ) |-> R ) ` ( I ` ( S ` j ) ) ) , ( F ` ( J ` ( E ` ( S ` j ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
| 135 |
12
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 136 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> L ) = ( i e. ( 0 ..^ M ) |-> L ) |
| 137 |
5 3 101 102 103 104 105 135 106 112 13 118 15 16 17 18 119 120 128 136
|
fourierdlem91 |
|- ( ( ph /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
| 138 |
137
|
adantlr |
|- ( ( ( ph /\ X < 0 ) /\ j e. ( 0 ..^ N ) ) -> if ( ( E ` ( S ` ( j + 1 ) ) ) = ( Q ` ( ( I ` ( S ` j ) ) + 1 ) ) , ( ( i e. ( 0 ..^ M ) |-> L ) ` ( I ` ( S ` j ) ) ) , ( F ` ( E ` ( S ` ( j + 1 ) ) ) ) ) e. ( ( F |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
| 139 |
65 67 68 73 83 90 92 93 100 130 134 138
|
fourierdlem108 |
|- ( ( ph /\ X < 0 ) -> S. ( ( ( A - X ) - -u X ) [,] ( ( B - X ) - -u X ) ) ( F ` x ) _d x = S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x ) |
| 140 |
63 139
|
eqtr2d |
|- ( ( ph /\ X < 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 141 |
44 50 140
|
syl2anc |
|- ( ( ( ph /\ -. 0 < X ) /\ -. X = 0 ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 142 |
43 141
|
pm2.61dan |
|- ( ( ph /\ -. 0 < X ) -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |
| 143 |
32 142
|
pm2.61dan |
|- ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |