| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem11.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem11.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | fourierdlem11.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 4 | 1 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 7 | 6 | simprd |  |-  ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) | 
						
							| 9 | 8 | simpld |  |-  ( ph -> ( Q ` 0 ) = A ) | 
						
							| 10 | 6 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 11 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 12 | 10 11 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 13 |  | 0zd |  |-  ( ph -> 0 e. ZZ ) | 
						
							| 14 | 2 | nnzd |  |-  ( ph -> M e. ZZ ) | 
						
							| 15 |  | 0red |  |-  ( ph -> 0 e. RR ) | 
						
							| 16 | 15 | leidd |  |-  ( ph -> 0 <_ 0 ) | 
						
							| 17 | 2 | nnred |  |-  ( ph -> M e. RR ) | 
						
							| 18 | 2 | nngt0d |  |-  ( ph -> 0 < M ) | 
						
							| 19 | 15 17 18 | ltled |  |-  ( ph -> 0 <_ M ) | 
						
							| 20 | 13 14 13 16 19 | elfzd |  |-  ( ph -> 0 e. ( 0 ... M ) ) | 
						
							| 21 | 12 20 | ffvelcdmd |  |-  ( ph -> ( Q ` 0 ) e. RR ) | 
						
							| 22 | 9 21 | eqeltrrd |  |-  ( ph -> A e. RR ) | 
						
							| 23 | 8 | simprd |  |-  ( ph -> ( Q ` M ) = B ) | 
						
							| 24 | 17 | leidd |  |-  ( ph -> M <_ M ) | 
						
							| 25 | 13 14 14 19 24 | elfzd |  |-  ( ph -> M e. ( 0 ... M ) ) | 
						
							| 26 | 12 25 | ffvelcdmd |  |-  ( ph -> ( Q ` M ) e. RR ) | 
						
							| 27 | 23 26 | eqeltrrd |  |-  ( ph -> B e. RR ) | 
						
							| 28 |  | 1zzd |  |-  ( ph -> 1 e. ZZ ) | 
						
							| 29 |  | 0le1 |  |-  0 <_ 1 | 
						
							| 30 | 29 | a1i |  |-  ( ph -> 0 <_ 1 ) | 
						
							| 31 | 2 | nnge1d |  |-  ( ph -> 1 <_ M ) | 
						
							| 32 | 13 14 28 30 31 | elfzd |  |-  ( ph -> 1 e. ( 0 ... M ) ) | 
						
							| 33 | 12 32 | ffvelcdmd |  |-  ( ph -> ( Q ` 1 ) e. RR ) | 
						
							| 34 |  | elfzo |  |-  ( ( 0 e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) ) | 
						
							| 35 | 13 13 14 34 | syl3anc |  |-  ( ph -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) ) | 
						
							| 36 | 16 18 35 | mpbir2and |  |-  ( ph -> 0 e. ( 0 ..^ M ) ) | 
						
							| 37 |  | 0re |  |-  0 e. RR | 
						
							| 38 |  | eleq1 |  |-  ( i = 0 -> ( i e. ( 0 ..^ M ) <-> 0 e. ( 0 ..^ M ) ) ) | 
						
							| 39 | 38 | anbi2d |  |-  ( i = 0 -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ 0 e. ( 0 ..^ M ) ) ) ) | 
						
							| 40 |  | fveq2 |  |-  ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) | 
						
							| 41 |  | oveq1 |  |-  ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) | 
						
							| 42 | 41 | fveq2d |  |-  ( i = 0 -> ( Q ` ( i + 1 ) ) = ( Q ` ( 0 + 1 ) ) ) | 
						
							| 43 | 40 42 | breq12d |  |-  ( i = 0 -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) | 
						
							| 44 | 39 43 | imbi12d |  |-  ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) ) | 
						
							| 45 | 7 | simprd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 46 | 45 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 47 | 44 46 | vtoclg |  |-  ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) | 
						
							| 48 | 37 47 | ax-mp |  |-  ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) | 
						
							| 49 | 36 48 | mpdan |  |-  ( ph -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) | 
						
							| 50 |  | 0p1e1 |  |-  ( 0 + 1 ) = 1 | 
						
							| 51 | 50 | a1i |  |-  ( ph -> ( 0 + 1 ) = 1 ) | 
						
							| 52 | 51 | fveq2d |  |-  ( ph -> ( Q ` ( 0 + 1 ) ) = ( Q ` 1 ) ) | 
						
							| 53 | 49 9 52 | 3brtr3d |  |-  ( ph -> A < ( Q ` 1 ) ) | 
						
							| 54 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 55 | 2 54 | eleqtrdi |  |-  ( ph -> M e. ( ZZ>= ` 1 ) ) | 
						
							| 56 | 12 | adantr |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 57 |  | 0zd |  |-  ( i e. ( 1 ... M ) -> 0 e. ZZ ) | 
						
							| 58 |  | elfzel2 |  |-  ( i e. ( 1 ... M ) -> M e. ZZ ) | 
						
							| 59 |  | elfzelz |  |-  ( i e. ( 1 ... M ) -> i e. ZZ ) | 
						
							| 60 |  | 0red |  |-  ( i e. ( 1 ... M ) -> 0 e. RR ) | 
						
							| 61 | 59 | zred |  |-  ( i e. ( 1 ... M ) -> i e. RR ) | 
						
							| 62 |  | 1red |  |-  ( i e. ( 1 ... M ) -> 1 e. RR ) | 
						
							| 63 |  | 0lt1 |  |-  0 < 1 | 
						
							| 64 | 63 | a1i |  |-  ( i e. ( 1 ... M ) -> 0 < 1 ) | 
						
							| 65 |  | elfzle1 |  |-  ( i e. ( 1 ... M ) -> 1 <_ i ) | 
						
							| 66 | 60 62 61 64 65 | ltletrd |  |-  ( i e. ( 1 ... M ) -> 0 < i ) | 
						
							| 67 | 60 61 66 | ltled |  |-  ( i e. ( 1 ... M ) -> 0 <_ i ) | 
						
							| 68 |  | elfzle2 |  |-  ( i e. ( 1 ... M ) -> i <_ M ) | 
						
							| 69 | 57 58 59 67 68 | elfzd |  |-  ( i e. ( 1 ... M ) -> i e. ( 0 ... M ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 71 | 56 70 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 72 | 12 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 73 |  | 0zd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. ZZ ) | 
						
							| 74 | 14 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ ) | 
						
							| 75 |  | elfzelz |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> i e. ZZ ) | 
						
							| 76 | 75 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ZZ ) | 
						
							| 77 |  | 0red |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 e. RR ) | 
						
							| 78 | 75 | zred |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> i e. RR ) | 
						
							| 79 |  | 1red |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 e. RR ) | 
						
							| 80 | 63 | a1i |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 < 1 ) | 
						
							| 81 |  | elfzle1 |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 <_ i ) | 
						
							| 82 | 77 79 78 80 81 | ltletrd |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 < i ) | 
						
							| 83 | 77 78 82 | ltled |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 <_ i ) | 
						
							| 84 | 83 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ i ) | 
						
							| 85 | 78 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR ) | 
						
							| 86 | 17 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR ) | 
						
							| 87 |  | peano2rem |  |-  ( M e. RR -> ( M - 1 ) e. RR ) | 
						
							| 88 | 86 87 | syl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) e. RR ) | 
						
							| 89 |  | elfzle2 |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> i <_ ( M - 1 ) ) | 
						
							| 90 | 89 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ ( M - 1 ) ) | 
						
							| 91 | 86 | ltm1d |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) < M ) | 
						
							| 92 | 85 88 86 90 91 | lelttrd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M ) | 
						
							| 93 | 85 86 92 | ltled |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ M ) | 
						
							| 94 | 73 74 76 84 93 | elfzd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ... M ) ) | 
						
							| 95 | 72 94 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) e. RR ) | 
						
							| 96 | 76 | peano2zd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ZZ ) | 
						
							| 97 |  | 0red |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. RR ) | 
						
							| 98 |  | peano2re |  |-  ( i e. RR -> ( i + 1 ) e. RR ) | 
						
							| 99 | 85 98 | syl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. RR ) | 
						
							| 100 |  | 1red |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 e. RR ) | 
						
							| 101 | 63 | a1i |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < 1 ) | 
						
							| 102 | 78 98 | syl |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> ( i + 1 ) e. RR ) | 
						
							| 103 | 78 | ltp1d |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> i < ( i + 1 ) ) | 
						
							| 104 | 79 78 102 81 103 | lelttrd |  |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 < ( i + 1 ) ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 < ( i + 1 ) ) | 
						
							| 106 | 97 100 99 101 105 | lttrd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < ( i + 1 ) ) | 
						
							| 107 | 97 99 106 | ltled |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ ( i + 1 ) ) | 
						
							| 108 | 85 88 100 90 | leadd1dd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ ( ( M - 1 ) + 1 ) ) | 
						
							| 109 | 2 | nncnd |  |-  ( ph -> M e. CC ) | 
						
							| 110 |  | 1cnd |  |-  ( ph -> 1 e. CC ) | 
						
							| 111 | 109 110 | npcand |  |-  ( ph -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 112 | 111 | adantr |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( M - 1 ) + 1 ) = M ) | 
						
							| 113 | 108 112 | breqtrd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ M ) | 
						
							| 114 | 73 74 96 107 113 | elfzd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 115 | 72 114 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 116 |  | elfzo |  |-  ( ( i e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) ) | 
						
							| 117 | 76 73 74 116 | syl3anc |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) ) | 
						
							| 118 | 84 92 117 | mpbir2and |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ..^ M ) ) | 
						
							| 119 | 118 46 | syldan |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 120 | 95 115 119 | ltled |  |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) | 
						
							| 121 | 55 71 120 | monoord |  |-  ( ph -> ( Q ` 1 ) <_ ( Q ` M ) ) | 
						
							| 122 | 121 23 | breqtrd |  |-  ( ph -> ( Q ` 1 ) <_ B ) | 
						
							| 123 | 22 33 27 53 122 | ltletrd |  |-  ( ph -> A < B ) | 
						
							| 124 | 22 27 123 | 3jca |  |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) ) |