Metamath Proof Explorer


Theorem fourierdlem11

Description: If there is a partition, than the lower bound is strictly less than the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem11.p
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
fourierdlem11.m
|- ( ph -> M e. NN )
fourierdlem11.q
|- ( ph -> Q e. ( P ` M ) )
Assertion fourierdlem11
|- ( ph -> ( A e. RR /\ B e. RR /\ A < B ) )

Proof

Step Hyp Ref Expression
1 fourierdlem11.p
 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } )
2 fourierdlem11.m
 |-  ( ph -> M e. NN )
3 fourierdlem11.q
 |-  ( ph -> Q e. ( P ` M ) )
4 1 fourierdlem2
 |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )
5 2 4 syl
 |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )
6 3 5 mpbid
 |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) )
7 6 simprd
 |-  ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) )
8 7 simpld
 |-  ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) )
9 8 simpld
 |-  ( ph -> ( Q ` 0 ) = A )
10 6 simpld
 |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) )
11 elmapi
 |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR )
12 10 11 syl
 |-  ( ph -> Q : ( 0 ... M ) --> RR )
13 0zd
 |-  ( ph -> 0 e. ZZ )
14 2 nnzd
 |-  ( ph -> M e. ZZ )
15 0red
 |-  ( ph -> 0 e. RR )
16 15 leidd
 |-  ( ph -> 0 <_ 0 )
17 2 nnred
 |-  ( ph -> M e. RR )
18 2 nngt0d
 |-  ( ph -> 0 < M )
19 15 17 18 ltled
 |-  ( ph -> 0 <_ M )
20 13 14 13 16 19 elfzd
 |-  ( ph -> 0 e. ( 0 ... M ) )
21 12 20 ffvelrnd
 |-  ( ph -> ( Q ` 0 ) e. RR )
22 9 21 eqeltrrd
 |-  ( ph -> A e. RR )
23 8 simprd
 |-  ( ph -> ( Q ` M ) = B )
24 17 leidd
 |-  ( ph -> M <_ M )
25 13 14 14 19 24 elfzd
 |-  ( ph -> M e. ( 0 ... M ) )
26 12 25 ffvelrnd
 |-  ( ph -> ( Q ` M ) e. RR )
27 23 26 eqeltrrd
 |-  ( ph -> B e. RR )
28 1zzd
 |-  ( ph -> 1 e. ZZ )
29 0le1
 |-  0 <_ 1
30 29 a1i
 |-  ( ph -> 0 <_ 1 )
31 2 nnge1d
 |-  ( ph -> 1 <_ M )
32 13 14 28 30 31 elfzd
 |-  ( ph -> 1 e. ( 0 ... M ) )
33 12 32 ffvelrnd
 |-  ( ph -> ( Q ` 1 ) e. RR )
34 elfzo
 |-  ( ( 0 e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) )
35 13 13 14 34 syl3anc
 |-  ( ph -> ( 0 e. ( 0 ..^ M ) <-> ( 0 <_ 0 /\ 0 < M ) ) )
36 16 18 35 mpbir2and
 |-  ( ph -> 0 e. ( 0 ..^ M ) )
37 0re
 |-  0 e. RR
38 eleq1
 |-  ( i = 0 -> ( i e. ( 0 ..^ M ) <-> 0 e. ( 0 ..^ M ) ) )
39 38 anbi2d
 |-  ( i = 0 -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ 0 e. ( 0 ..^ M ) ) ) )
40 fveq2
 |-  ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) )
41 oveq1
 |-  ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) )
42 41 fveq2d
 |-  ( i = 0 -> ( Q ` ( i + 1 ) ) = ( Q ` ( 0 + 1 ) ) )
43 40 42 breq12d
 |-  ( i = 0 -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) )
44 39 43 imbi12d
 |-  ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) )
45 7 simprd
 |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) )
46 45 r19.21bi
 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) )
47 44 46 vtoclg
 |-  ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) )
48 37 47 ax-mp
 |-  ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) )
49 36 48 mpdan
 |-  ( ph -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) )
50 0p1e1
 |-  ( 0 + 1 ) = 1
51 50 a1i
 |-  ( ph -> ( 0 + 1 ) = 1 )
52 51 fveq2d
 |-  ( ph -> ( Q ` ( 0 + 1 ) ) = ( Q ` 1 ) )
53 49 9 52 3brtr3d
 |-  ( ph -> A < ( Q ` 1 ) )
54 nnuz
 |-  NN = ( ZZ>= ` 1 )
55 2 54 eleqtrdi
 |-  ( ph -> M e. ( ZZ>= ` 1 ) )
56 12 adantr
 |-  ( ( ph /\ i e. ( 1 ... M ) ) -> Q : ( 0 ... M ) --> RR )
57 0zd
 |-  ( i e. ( 1 ... M ) -> 0 e. ZZ )
58 elfzel2
 |-  ( i e. ( 1 ... M ) -> M e. ZZ )
59 elfzelz
 |-  ( i e. ( 1 ... M ) -> i e. ZZ )
60 0red
 |-  ( i e. ( 1 ... M ) -> 0 e. RR )
61 59 zred
 |-  ( i e. ( 1 ... M ) -> i e. RR )
62 1red
 |-  ( i e. ( 1 ... M ) -> 1 e. RR )
63 0lt1
 |-  0 < 1
64 63 a1i
 |-  ( i e. ( 1 ... M ) -> 0 < 1 )
65 elfzle1
 |-  ( i e. ( 1 ... M ) -> 1 <_ i )
66 60 62 61 64 65 ltletrd
 |-  ( i e. ( 1 ... M ) -> 0 < i )
67 60 61 66 ltled
 |-  ( i e. ( 1 ... M ) -> 0 <_ i )
68 elfzle2
 |-  ( i e. ( 1 ... M ) -> i <_ M )
69 57 58 59 67 68 elfzd
 |-  ( i e. ( 1 ... M ) -> i e. ( 0 ... M ) )
70 69 adantl
 |-  ( ( ph /\ i e. ( 1 ... M ) ) -> i e. ( 0 ... M ) )
71 56 70 ffvelrnd
 |-  ( ( ph /\ i e. ( 1 ... M ) ) -> ( Q ` i ) e. RR )
72 12 adantr
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> Q : ( 0 ... M ) --> RR )
73 0zd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. ZZ )
74 14 adantr
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. ZZ )
75 elfzelz
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> i e. ZZ )
76 75 adantl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ZZ )
77 0red
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 e. RR )
78 75 zred
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> i e. RR )
79 1red
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 e. RR )
80 63 a1i
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 < 1 )
81 elfzle1
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 <_ i )
82 77 79 78 80 81 ltletrd
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 < i )
83 77 78 82 ltled
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 0 <_ i )
84 83 adantl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ i )
85 78 adantl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. RR )
86 17 adantr
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> M e. RR )
87 peano2rem
 |-  ( M e. RR -> ( M - 1 ) e. RR )
88 86 87 syl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) e. RR )
89 elfzle2
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> i <_ ( M - 1 ) )
90 89 adantl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ ( M - 1 ) )
91 86 ltm1d
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( M - 1 ) < M )
92 85 88 86 90 91 lelttrd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i < M )
93 85 86 92 ltled
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i <_ M )
94 73 74 76 84 93 elfzd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ... M ) )
95 72 94 ffvelrnd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) e. RR )
96 76 peano2zd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ZZ )
97 0red
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 e. RR )
98 peano2re
 |-  ( i e. RR -> ( i + 1 ) e. RR )
99 85 98 syl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. RR )
100 1red
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 e. RR )
101 63 a1i
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < 1 )
102 78 98 syl
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> ( i + 1 ) e. RR )
103 78 ltp1d
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> i < ( i + 1 ) )
104 79 78 102 81 103 lelttrd
 |-  ( i e. ( 1 ... ( M - 1 ) ) -> 1 < ( i + 1 ) )
105 104 adantl
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 1 < ( i + 1 ) )
106 97 100 99 101 105 lttrd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 < ( i + 1 ) )
107 97 99 106 ltled
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> 0 <_ ( i + 1 ) )
108 85 88 100 90 leadd1dd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ ( ( M - 1 ) + 1 ) )
109 2 nncnd
 |-  ( ph -> M e. CC )
110 1cnd
 |-  ( ph -> 1 e. CC )
111 109 110 npcand
 |-  ( ph -> ( ( M - 1 ) + 1 ) = M )
112 111 adantr
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( ( M - 1 ) + 1 ) = M )
113 108 112 breqtrd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) <_ M )
114 73 74 96 107 113 elfzd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i + 1 ) e. ( 0 ... M ) )
115 72 114 ffvelrnd
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR )
116 elfzo
 |-  ( ( i e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) )
117 76 73 74 116 syl3anc
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( i e. ( 0 ..^ M ) <-> ( 0 <_ i /\ i < M ) ) )
118 84 92 117 mpbir2and
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> i e. ( 0 ..^ M ) )
119 118 46 syldan
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) )
120 95 115 119 ltled
 |-  ( ( ph /\ i e. ( 1 ... ( M - 1 ) ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) )
121 55 71 120 monoord
 |-  ( ph -> ( Q ` 1 ) <_ ( Q ` M ) )
122 121 23 breqtrd
 |-  ( ph -> ( Q ` 1 ) <_ B )
123 22 33 27 53 122 ltletrd
 |-  ( ph -> A < B )
124 22 27 123 3jca
 |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) )