Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem111.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( cos ` ( n x. t ) ) ) _d t / _pi ) ) |
2 |
|
fourierdlem111.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( sin ` ( n x. t ) ) ) _d t / _pi ) ) |
3 |
|
fourierdlem111.s |
|- S = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
4 |
|
fourierdlem111.d |
|- D = ( n e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
5 |
|
fourierdlem111.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
6 |
|
fourierdlem111.m |
|- ( ph -> M e. NN ) |
7 |
|
fourierdlem111.q |
|- ( ph -> Q e. ( P ` M ) ) |
8 |
|
fourierdlem111.x |
|- ( ph -> X e. RR ) |
9 |
|
fourierdlem111.6 |
|- ( ph -> F : RR --> RR ) |
10 |
|
fourierdlem111.fper |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
11 |
|
fourierdlem111.g |
|- G = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) |
12 |
|
fourierdlem111.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
13 |
|
fourierdlem111.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
14 |
|
fourierdlem111.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
15 |
|
fourierdlem111.t |
|- T = ( 2 x. _pi ) |
16 |
|
fourierdlem111.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` m ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
17 |
|
fourierdlem111.14 |
|- W = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) |
18 |
|
eleq1 |
|- ( k = n -> ( k e. NN <-> n e. NN ) ) |
19 |
18
|
anbi2d |
|- ( k = n -> ( ( ph /\ k e. NN ) <-> ( ph /\ n e. NN ) ) ) |
20 |
|
fveq2 |
|- ( k = n -> ( S ` k ) = ( S ` n ) ) |
21 |
|
fveq2 |
|- ( k = n -> ( D ` k ) = ( D ` n ) ) |
22 |
21
|
fveq1d |
|- ( k = n -> ( ( D ` k ) ` ( t - X ) ) = ( ( D ` n ) ` ( t - X ) ) ) |
23 |
22
|
oveq2d |
|- ( k = n -> ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) = ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
24 |
23
|
adantr |
|- ( ( k = n /\ t e. ( -u _pi (,) _pi ) ) -> ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) = ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
25 |
24
|
itgeq2dv |
|- ( k = n -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) |
26 |
20 25
|
eqeq12d |
|- ( k = n -> ( ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t <-> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) ) |
27 |
19 26
|
imbi12d |
|- ( k = n -> ( ( ( ph /\ k e. NN ) -> ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t ) <-> ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) ) ) |
28 |
9
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : RR --> RR ) |
29 |
|
eqid |
|- ( -u _pi (,) _pi ) = ( -u _pi (,) _pi ) |
30 |
|
ioossre |
|- ( -u _pi (,) _pi ) C_ RR |
31 |
30
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) C_ RR ) |
32 |
9 31
|
feqresmpt |
|- ( ph -> ( F |` ( -u _pi (,) _pi ) ) = ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) ) |
33 |
|
ioossicc |
|- ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) |
34 |
33
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) ) |
35 |
|
ioombl |
|- ( -u _pi (,) _pi ) e. dom vol |
36 |
35
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) e. dom vol ) |
37 |
9
|
adantr |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) |
38 |
|
pire |
|- _pi e. RR |
39 |
38
|
renegcli |
|- -u _pi e. RR |
40 |
39 38
|
elicc2i |
|- ( t e. ( -u _pi [,] _pi ) <-> ( t e. RR /\ -u _pi <_ t /\ t <_ _pi ) ) |
41 |
40
|
simp1bi |
|- ( t e. ( -u _pi [,] _pi ) -> t e. RR ) |
42 |
41
|
ssriv |
|- ( -u _pi [,] _pi ) C_ RR |
43 |
42
|
a1i |
|- ( ph -> ( -u _pi [,] _pi ) C_ RR ) |
44 |
43
|
sselda |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) |
45 |
37 44
|
ffvelrnd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( F ` x ) e. RR ) |
46 |
9 43
|
feqresmpt |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) ) |
47 |
|
ax-resscn |
|- RR C_ CC |
48 |
47
|
a1i |
|- ( ph -> RR C_ CC ) |
49 |
9 48
|
fssd |
|- ( ph -> F : RR --> CC ) |
50 |
49 43
|
fssresd |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) |
51 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
52 |
39
|
rexri |
|- -u _pi e. RR* |
53 |
52
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
54 |
38
|
rexri |
|- _pi e. RR* |
55 |
54
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
56 |
5 6 7
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
57 |
56
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
58 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
59 |
53 55 57 58
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
60 |
51 59
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
61 |
60
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
62 |
61 12
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
63 |
61
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
64 |
13 63
|
eleqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
65 |
61
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
66 |
14 65
|
eleqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
67 |
5 6 7 50 62 64 66
|
fourierdlem69 |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) e. L^1 ) |
68 |
46 67
|
eqeltrrd |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) e. L^1 ) |
69 |
34 36 45 68
|
iblss |
|- ( ph -> ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) |
70 |
32 69
|
eqeltrd |
|- ( ph -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
71 |
70
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
72 |
8
|
adantr |
|- ( ( ph /\ k e. NN ) -> X e. RR ) |
73 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
74 |
28 29 71 1 2 72 3 4 73
|
fourierdlem83 |
|- ( ( ph /\ k e. NN ) -> ( S ` k ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` k ) ` ( t - X ) ) ) _d t ) |
75 |
27 74
|
chvarvv |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) |
76 |
39
|
a1i |
|- ( ( ph /\ n e. NN ) -> -u _pi e. RR ) |
77 |
38
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
78 |
49
|
adantr |
|- ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> F : RR --> CC ) |
79 |
41
|
adantl |
|- ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> t e. RR ) |
80 |
78 79
|
ffvelrnd |
|- ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> ( F ` t ) e. CC ) |
81 |
80
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( F ` t ) e. CC ) |
82 |
4
|
dirkerf |
|- ( n e. NN -> ( D ` n ) : RR --> RR ) |
83 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( D ` n ) : RR --> RR ) |
84 |
8
|
adantr |
|- ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> X e. RR ) |
85 |
79 84
|
resubcld |
|- ( ( ph /\ t e. ( -u _pi [,] _pi ) ) -> ( t - X ) e. RR ) |
86 |
85
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( t - X ) e. RR ) |
87 |
83 86
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` ( t - X ) ) e. RR ) |
88 |
87
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` ( t - X ) ) e. CC ) |
89 |
81 88
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) e. CC ) |
90 |
76 77 89
|
itgioo |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( -u _pi [,] _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) |
91 |
|
fvres |
|- ( t e. ( -u _pi [,] _pi ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` t ) = ( F ` t ) ) |
92 |
91
|
eqcomd |
|- ( t e. ( -u _pi [,] _pi ) -> ( F ` t ) = ( ( F |` ( -u _pi [,] _pi ) ) ` t ) ) |
93 |
92
|
oveq1d |
|- ( t e. ( -u _pi [,] _pi ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
94 |
93
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ t e. ( -u _pi [,] _pi ) ) -> ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
95 |
94
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t ) |
96 |
|
simpl |
|- ( ( n = m /\ y e. RR ) -> n = m ) |
97 |
96
|
oveq2d |
|- ( ( n = m /\ y e. RR ) -> ( 2 x. n ) = ( 2 x. m ) ) |
98 |
97
|
oveq1d |
|- ( ( n = m /\ y e. RR ) -> ( ( 2 x. n ) + 1 ) = ( ( 2 x. m ) + 1 ) ) |
99 |
98
|
oveq1d |
|- ( ( n = m /\ y e. RR ) -> ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) ) |
100 |
96
|
oveq1d |
|- ( ( n = m /\ y e. RR ) -> ( n + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) |
101 |
100
|
oveq1d |
|- ( ( n = m /\ y e. RR ) -> ( ( n + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. y ) ) |
102 |
101
|
fveq2d |
|- ( ( n = m /\ y e. RR ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) ) |
103 |
102
|
oveq1d |
|- ( ( n = m /\ y e. RR ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) |
104 |
99 103
|
ifeq12d |
|- ( ( n = m /\ y e. RR ) -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
105 |
104
|
mpteq2dva |
|- ( n = m -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
106 |
105
|
cbvmptv |
|- ( n e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
107 |
4 106
|
eqtri |
|- D = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
108 |
|
fveq2 |
|- ( s = t -> ( ( F |` ( -u _pi [,] _pi ) ) ` s ) = ( ( F |` ( -u _pi [,] _pi ) ) ` t ) ) |
109 |
|
oveq1 |
|- ( s = t -> ( s - X ) = ( t - X ) ) |
110 |
109
|
fveq2d |
|- ( s = t -> ( ( D ` n ) ` ( s - X ) ) = ( ( D ` n ) ` ( t - X ) ) ) |
111 |
108 110
|
oveq12d |
|- ( s = t -> ( ( ( F |` ( -u _pi [,] _pi ) ) ` s ) x. ( ( D ` n ) ` ( s - X ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
112 |
111
|
cbvmptv |
|- ( s e. ( -u _pi [,] _pi ) |-> ( ( ( F |` ( -u _pi [,] _pi ) ) ` s ) x. ( ( D ` n ) ` ( s - X ) ) ) ) = ( t e. ( -u _pi [,] _pi ) |-> ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) ) |
113 |
7
|
adantr |
|- ( ( ph /\ n e. NN ) -> Q e. ( P ` M ) ) |
114 |
6
|
adantr |
|- ( ( ph /\ n e. NN ) -> M e. NN ) |
115 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
116 |
8
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. RR ) |
117 |
50
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) |
118 |
62
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
119 |
64
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
120 |
66
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
121 |
107 5 112 113 114 115 116 117 118 119 120
|
fourierdlem101 |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) |
122 |
|
oveq2 |
|- ( s = y -> ( X + s ) = ( X + y ) ) |
123 |
122
|
fveq2d |
|- ( s = y -> ( F ` ( X + s ) ) = ( F ` ( X + y ) ) ) |
124 |
|
fveq2 |
|- ( s = y -> ( ( D ` n ) ` s ) = ( ( D ` n ) ` y ) ) |
125 |
123 124
|
oveq12d |
|- ( s = y -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) ) |
126 |
125
|
cbvitgv |
|- S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y |
127 |
126
|
a1i |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) |
128 |
39
|
a1i |
|- ( ph -> -u _pi e. RR ) |
129 |
128 8
|
resubcld |
|- ( ph -> ( -u _pi - X ) e. RR ) |
130 |
129
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( -u _pi - X ) e. RR ) |
131 |
38
|
a1i |
|- ( ph -> _pi e. RR ) |
132 |
131 8
|
resubcld |
|- ( ph -> ( _pi - X ) e. RR ) |
133 |
132
|
adantr |
|- ( ( ph /\ n e. NN ) -> ( _pi - X ) e. RR ) |
134 |
49
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> F : RR --> CC ) |
135 |
8
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> X e. RR ) |
136 |
|
simpr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) |
137 |
129
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) e. RR ) |
138 |
132
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( _pi - X ) e. RR ) |
139 |
|
elicc2 |
|- ( ( ( -u _pi - X ) e. RR /\ ( _pi - X ) e. RR ) -> ( y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) <-> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) ) |
140 |
137 138 139
|
syl2anc |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) <-> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) ) |
141 |
136 140
|
mpbid |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( y e. RR /\ ( -u _pi - X ) <_ y /\ y <_ ( _pi - X ) ) ) |
142 |
141
|
simp1d |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. RR ) |
143 |
135 142
|
readdcld |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) e. RR ) |
144 |
134 143
|
ffvelrnd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) e. CC ) |
145 |
144
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) e. CC ) |
146 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( D ` n ) : RR --> RR ) |
147 |
142
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y e. RR ) |
148 |
146 147
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( D ` n ) ` y ) e. RR ) |
149 |
148
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( D ` n ) ` y ) e. CC ) |
150 |
145 149
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) e. CC ) |
151 |
130 133 150
|
itgioo |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) |
152 |
39
|
a1i |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi e. RR ) |
153 |
38
|
a1i |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> _pi e. RR ) |
154 |
8
|
recnd |
|- ( ph -> X e. CC ) |
155 |
131
|
recnd |
|- ( ph -> _pi e. CC ) |
156 |
155
|
negcld |
|- ( ph -> -u _pi e. CC ) |
157 |
154 156
|
pncan3d |
|- ( ph -> ( X + ( -u _pi - X ) ) = -u _pi ) |
158 |
157
|
eqcomd |
|- ( ph -> -u _pi = ( X + ( -u _pi - X ) ) ) |
159 |
158
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi = ( X + ( -u _pi - X ) ) ) |
160 |
141
|
simp2d |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) <_ y ) |
161 |
137 142 135 160
|
leadd2dd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + ( -u _pi - X ) ) <_ ( X + y ) ) |
162 |
159 161
|
eqbrtrd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> -u _pi <_ ( X + y ) ) |
163 |
141
|
simp3d |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> y <_ ( _pi - X ) ) |
164 |
142 138 135 163
|
leadd2dd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) <_ ( X + ( _pi - X ) ) ) |
165 |
154
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> X e. CC ) |
166 |
155
|
adantr |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> _pi e. CC ) |
167 |
165 166
|
pncan3d |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + ( _pi - X ) ) = _pi ) |
168 |
164 167
|
breqtrd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) <_ _pi ) |
169 |
152 153 143 162 168
|
eliccd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( X + y ) e. ( -u _pi [,] _pi ) ) |
170 |
|
fvres |
|- ( ( X + y ) e. ( -u _pi [,] _pi ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) |
171 |
169 170
|
syl |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) |
172 |
171
|
eqcomd |
|- ( ( ph /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) = ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) ) |
173 |
172
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( F ` ( X + y ) ) = ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) ) |
174 |
173
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ y e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) ) |
175 |
174
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( F ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y ) |
176 |
127 151 175
|
3eqtrrd |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` ( X + y ) ) x. ( ( D ` n ) ` y ) ) _d y = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
177 |
121 176
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( ( ( F |` ( -u _pi [,] _pi ) ) ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
178 |
90 95 177
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` t ) x. ( ( D ` n ) ` ( t - X ) ) ) _d t = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
179 |
|
elioore |
|- ( s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) -> s e. RR ) |
180 |
179
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> s e. RR ) |
181 |
49
|
adantr |
|- ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> F : RR --> CC ) |
182 |
8
|
adantr |
|- ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> X e. RR ) |
183 |
179
|
adantl |
|- ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> s e. RR ) |
184 |
182 183
|
readdcld |
|- ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( X + s ) e. RR ) |
185 |
181 184
|
ffvelrnd |
|- ( ( ph /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
186 |
185
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
187 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( D ` n ) : RR --> RR ) |
188 |
187 180
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( D ` n ) ` s ) e. RR ) |
189 |
188
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( D ` n ) ` s ) e. CC ) |
190 |
186 189
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
191 |
|
oveq2 |
|- ( x = s -> ( X + x ) = ( X + s ) ) |
192 |
191
|
fveq2d |
|- ( x = s -> ( F ` ( X + x ) ) = ( F ` ( X + s ) ) ) |
193 |
|
fveq2 |
|- ( x = s -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` s ) ) |
194 |
192 193
|
oveq12d |
|- ( x = s -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
195 |
194
|
cbvmptv |
|- ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
196 |
11 195
|
eqtri |
|- G = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
197 |
196
|
fvmpt2 |
|- ( ( s e. RR /\ ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
198 |
180 190 197
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
199 |
198
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) (,) ( _pi - X ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) |
200 |
199
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s ) |
201 |
49
|
adantr |
|- ( ( ph /\ x e. RR ) -> F : RR --> CC ) |
202 |
8
|
adantr |
|- ( ( ph /\ x e. RR ) -> X e. RR ) |
203 |
|
simpr |
|- ( ( ph /\ x e. RR ) -> x e. RR ) |
204 |
202 203
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( X + x ) e. RR ) |
205 |
201 204
|
ffvelrnd |
|- ( ( ph /\ x e. RR ) -> ( F ` ( X + x ) ) e. CC ) |
206 |
205
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + x ) ) e. CC ) |
207 |
82
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) : RR --> RR ) |
208 |
207
|
ffvelrnda |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) e. RR ) |
209 |
208
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) e. CC ) |
210 |
206 209
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) e. CC ) |
211 |
210 11
|
fmptd |
|- ( ( ph /\ n e. NN ) -> G : RR --> CC ) |
212 |
211
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> G : RR --> CC ) |
213 |
129
|
adantr |
|- ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( -u _pi - X ) e. RR ) |
214 |
132
|
adantr |
|- ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( _pi - X ) e. RR ) |
215 |
|
simpr |
|- ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) |
216 |
|
eliccre |
|- ( ( ( -u _pi - X ) e. RR /\ ( _pi - X ) e. RR /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) |
217 |
213 214 215 216
|
syl3anc |
|- ( ( ph /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) |
218 |
217
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> s e. RR ) |
219 |
212 218
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( ( -u _pi - X ) [,] ( _pi - X ) ) ) -> ( G ` s ) e. CC ) |
220 |
130 133 219
|
itgioo |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` s ) _d s ) |
221 |
|
fveq2 |
|- ( s = x -> ( G ` s ) = ( G ` x ) ) |
222 |
221
|
cbvitgv |
|- S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x |
223 |
220 222
|
eqtrdi |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( G ` s ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) |
224 |
200 223
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) |
225 |
|
eqid |
|- ( ( _pi - X ) - ( -u _pi - X ) ) = ( ( _pi - X ) - ( -u _pi - X ) ) |
226 |
116
|
renegcld |
|- ( ( ph /\ n e. NN ) -> -u X e. RR ) |
227 |
5
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
228 |
6 227
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
229 |
7 228
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
230 |
229
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
231 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
232 |
230 231
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
233 |
232
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
234 |
8
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
235 |
233 234
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) - X ) e. RR ) |
236 |
235 17
|
fmptd |
|- ( ph -> W : ( 0 ... M ) --> RR ) |
237 |
|
reex |
|- RR e. _V |
238 |
|
ovex |
|- ( 0 ... M ) e. _V |
239 |
237 238
|
pm3.2i |
|- ( RR e. _V /\ ( 0 ... M ) e. _V ) |
240 |
|
elmapg |
|- ( ( RR e. _V /\ ( 0 ... M ) e. _V ) -> ( W e. ( RR ^m ( 0 ... M ) ) <-> W : ( 0 ... M ) --> RR ) ) |
241 |
239 240
|
mp1i |
|- ( ph -> ( W e. ( RR ^m ( 0 ... M ) ) <-> W : ( 0 ... M ) --> RR ) ) |
242 |
236 241
|
mpbird |
|- ( ph -> W e. ( RR ^m ( 0 ... M ) ) ) |
243 |
17
|
a1i |
|- ( ph -> W = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) ) |
244 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
245 |
229
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
246 |
245
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) ) |
247 |
246
|
simpld |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
248 |
244 247
|
sylan9eqr |
|- ( ( ph /\ i = 0 ) -> ( Q ` i ) = -u _pi ) |
249 |
248
|
oveq1d |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) - X ) = ( -u _pi - X ) ) |
250 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
251 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
252 |
|
0red |
|- ( M e. NN -> 0 e. RR ) |
253 |
|
nnre |
|- ( M e. NN -> M e. RR ) |
254 |
|
nngt0 |
|- ( M e. NN -> 0 < M ) |
255 |
252 253 254
|
ltled |
|- ( M e. NN -> 0 <_ M ) |
256 |
6 255
|
syl |
|- ( ph -> 0 <_ M ) |
257 |
|
eluz2 |
|- ( M e. ( ZZ>= ` 0 ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 <_ M ) ) |
258 |
250 251 256 257
|
syl3anbrc |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
259 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
260 |
258 259
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
261 |
243 249 260 129
|
fvmptd |
|- ( ph -> ( W ` 0 ) = ( -u _pi - X ) ) |
262 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
263 |
246
|
simprd |
|- ( ph -> ( Q ` M ) = _pi ) |
264 |
262 263
|
sylan9eqr |
|- ( ( ph /\ i = M ) -> ( Q ` i ) = _pi ) |
265 |
264
|
oveq1d |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) - X ) = ( _pi - X ) ) |
266 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
267 |
258 266
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
268 |
243 265 267 132
|
fvmptd |
|- ( ph -> ( W ` M ) = ( _pi - X ) ) |
269 |
261 268
|
jca |
|- ( ph -> ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) ) |
270 |
232
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
271 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
272 |
271
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
273 |
270 272
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
274 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
275 |
274
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
276 |
270 275
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
277 |
8
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
278 |
245
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
279 |
278
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
280 |
273 276 277 279
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) < ( ( Q ` ( i + 1 ) ) - X ) ) |
281 |
272 235
|
syldan |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) - X ) e. RR ) |
282 |
17
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) - X ) e. RR ) -> ( W ` i ) = ( ( Q ` i ) - X ) ) |
283 |
272 281 282
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) = ( ( Q ` i ) - X ) ) |
284 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
285 |
284
|
oveq1d |
|- ( i = j -> ( ( Q ` i ) - X ) = ( ( Q ` j ) - X ) ) |
286 |
285
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) |
287 |
17 286
|
eqtri |
|- W = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) |
288 |
287
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) ) |
289 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
290 |
289
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
291 |
290
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) - X ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
292 |
276 277
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - X ) e. RR ) |
293 |
288 291 275 292
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) - X ) ) |
294 |
280 283 293
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) < ( W ` ( i + 1 ) ) ) |
295 |
294
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) |
296 |
242 269 295
|
jca32 |
|- ( ph -> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) |
297 |
16
|
fourierdlem2 |
|- ( M e. NN -> ( W e. ( O ` M ) <-> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) ) |
298 |
6 297
|
syl |
|- ( ph -> ( W e. ( O ` M ) <-> ( W e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( W ` 0 ) = ( -u _pi - X ) /\ ( W ` M ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ M ) ( W ` i ) < ( W ` ( i + 1 ) ) ) ) ) ) |
299 |
296 298
|
mpbird |
|- ( ph -> W e. ( O ` M ) ) |
300 |
299
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. ( O ` M ) ) |
301 |
155 156 154
|
nnncan2d |
|- ( ph -> ( ( _pi - X ) - ( -u _pi - X ) ) = ( _pi - -u _pi ) ) |
302 |
|
picn |
|- _pi e. CC |
303 |
302
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
304 |
302 302
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
305 |
303 15 304
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
306 |
301 305
|
eqtr4di |
|- ( ph -> ( ( _pi - X ) - ( -u _pi - X ) ) = T ) |
307 |
306
|
oveq2d |
|- ( ph -> ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( x + T ) ) |
308 |
307
|
fveq2d |
|- ( ph -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( x + T ) ) ) |
309 |
308
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( x + T ) ) ) |
310 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> x e. RR ) |
311 |
11
|
fvmpt2 |
|- ( ( x e. RR /\ ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) e. CC ) -> ( G ` x ) = ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) |
312 |
310 210 311
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` x ) = ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) |
313 |
154
|
adantr |
|- ( ( ph /\ x e. RR ) -> X e. CC ) |
314 |
203
|
recnd |
|- ( ( ph /\ x e. RR ) -> x e. CC ) |
315 |
|
2re |
|- 2 e. RR |
316 |
315 38
|
remulcli |
|- ( 2 x. _pi ) e. RR |
317 |
15 316
|
eqeltri |
|- T e. RR |
318 |
317
|
a1i |
|- ( ph -> T e. RR ) |
319 |
318
|
recnd |
|- ( ph -> T e. CC ) |
320 |
319
|
adantr |
|- ( ( ph /\ x e. RR ) -> T e. CC ) |
321 |
313 314 320
|
addassd |
|- ( ( ph /\ x e. RR ) -> ( ( X + x ) + T ) = ( X + ( x + T ) ) ) |
322 |
321
|
eqcomd |
|- ( ( ph /\ x e. RR ) -> ( X + ( x + T ) ) = ( ( X + x ) + T ) ) |
323 |
322
|
fveq2d |
|- ( ( ph /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) = ( F ` ( ( X + x ) + T ) ) ) |
324 |
|
simpl |
|- ( ( ph /\ x e. RR ) -> ph ) |
325 |
324 204
|
jca |
|- ( ( ph /\ x e. RR ) -> ( ph /\ ( X + x ) e. RR ) ) |
326 |
|
eleq1 |
|- ( s = ( X + x ) -> ( s e. RR <-> ( X + x ) e. RR ) ) |
327 |
326
|
anbi2d |
|- ( s = ( X + x ) -> ( ( ph /\ s e. RR ) <-> ( ph /\ ( X + x ) e. RR ) ) ) |
328 |
|
oveq1 |
|- ( s = ( X + x ) -> ( s + T ) = ( ( X + x ) + T ) ) |
329 |
328
|
fveq2d |
|- ( s = ( X + x ) -> ( F ` ( s + T ) ) = ( F ` ( ( X + x ) + T ) ) ) |
330 |
|
fveq2 |
|- ( s = ( X + x ) -> ( F ` s ) = ( F ` ( X + x ) ) ) |
331 |
329 330
|
eqeq12d |
|- ( s = ( X + x ) -> ( ( F ` ( s + T ) ) = ( F ` s ) <-> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) |
332 |
327 331
|
imbi12d |
|- ( s = ( X + x ) -> ( ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) <-> ( ( ph /\ ( X + x ) e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) ) |
333 |
|
eleq1 |
|- ( x = s -> ( x e. RR <-> s e. RR ) ) |
334 |
333
|
anbi2d |
|- ( x = s -> ( ( ph /\ x e. RR ) <-> ( ph /\ s e. RR ) ) ) |
335 |
|
oveq1 |
|- ( x = s -> ( x + T ) = ( s + T ) ) |
336 |
335
|
fveq2d |
|- ( x = s -> ( F ` ( x + T ) ) = ( F ` ( s + T ) ) ) |
337 |
|
fveq2 |
|- ( x = s -> ( F ` x ) = ( F ` s ) ) |
338 |
336 337
|
eqeq12d |
|- ( x = s -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( s + T ) ) = ( F ` s ) ) ) |
339 |
334 338
|
imbi12d |
|- ( x = s -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) ) ) |
340 |
339 10
|
chvarvv |
|- ( ( ph /\ s e. RR ) -> ( F ` ( s + T ) ) = ( F ` s ) ) |
341 |
332 340
|
vtoclg |
|- ( ( X + x ) e. RR -> ( ( ph /\ ( X + x ) e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) ) |
342 |
204 325 341
|
sylc |
|- ( ( ph /\ x e. RR ) -> ( F ` ( ( X + x ) + T ) ) = ( F ` ( X + x ) ) ) |
343 |
323 342
|
eqtr2d |
|- ( ( ph /\ x e. RR ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( x + T ) ) ) ) |
344 |
343
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( x + T ) ) ) ) |
345 |
4 15
|
dirkerper |
|- ( ( n e. NN /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) = ( ( D ` n ) ` x ) ) |
346 |
345
|
eqcomd |
|- ( ( n e. NN /\ x e. RR ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( x + T ) ) ) |
347 |
346
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( x + T ) ) ) |
348 |
344 347
|
oveq12d |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) |
349 |
196
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> G = ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) |
350 |
|
oveq2 |
|- ( s = ( x + T ) -> ( X + s ) = ( X + ( x + T ) ) ) |
351 |
350
|
fveq2d |
|- ( s = ( x + T ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( x + T ) ) ) ) |
352 |
|
fveq2 |
|- ( s = ( x + T ) -> ( ( D ` n ) ` s ) = ( ( D ` n ) ` ( x + T ) ) ) |
353 |
351 352
|
oveq12d |
|- ( s = ( x + T ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) |
354 |
353
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ x e. RR ) /\ s = ( x + T ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) |
355 |
317
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> T e. RR ) |
356 |
310 355
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( x + T ) e. RR ) |
357 |
317
|
a1i |
|- ( ( ph /\ x e. RR ) -> T e. RR ) |
358 |
203 357
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( x + T ) e. RR ) |
359 |
202 358
|
readdcld |
|- ( ( ph /\ x e. RR ) -> ( X + ( x + T ) ) e. RR ) |
360 |
201 359
|
ffvelrnd |
|- ( ( ph /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) e. CC ) |
361 |
360
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( F ` ( X + ( x + T ) ) ) e. CC ) |
362 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( D ` n ) : RR --> RR ) |
363 |
362 356
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) e. RR ) |
364 |
363
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( D ` n ) ` ( x + T ) ) e. CC ) |
365 |
361 364
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) e. CC ) |
366 |
349 354 356 365
|
fvmptd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + T ) ) = ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) ) |
367 |
366
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( ( F ` ( X + ( x + T ) ) ) x. ( ( D ` n ) ` ( x + T ) ) ) = ( G ` ( x + T ) ) ) |
368 |
312 348 367
|
3eqtrrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + T ) ) = ( G ` x ) ) |
369 |
309 368
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ x e. RR ) -> ( G ` ( x + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` x ) ) |
370 |
196
|
reseq1i |
|- ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
371 |
370
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
372 |
|
ioossre |
|- ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR |
373 |
|
resmpt |
|- ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR -> ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) |
374 |
372 373
|
ax-mp |
|- ( ( s e. RR |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
375 |
371 374
|
eqtrdi |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) ) |
376 |
273
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
377 |
376
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
378 |
276
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
379 |
378
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
380 |
8
|
adantr |
|- ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) |
381 |
|
elioore |
|- ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> s e. RR ) |
382 |
381
|
adantl |
|- ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. RR ) |
383 |
380 382
|
readdcld |
|- ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
384 |
383
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
385 |
|
eleq1 |
|- ( x = s -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) <-> s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
386 |
385
|
anbi2d |
|- ( x = s -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) ) |
387 |
191
|
breq2d |
|- ( x = s -> ( ( Q ` i ) < ( X + x ) <-> ( Q ` i ) < ( X + s ) ) ) |
388 |
386 387
|
imbi12d |
|- ( x = s -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + x ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + s ) ) ) ) |
389 |
154
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
390 |
283 281
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR ) |
391 |
390
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. CC ) |
392 |
389 391
|
addcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) = ( ( W ` i ) + X ) ) |
393 |
283
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) + X ) = ( ( ( Q ` i ) - X ) + X ) ) |
394 |
273
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
395 |
394 389
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) - X ) + X ) = ( Q ` i ) ) |
396 |
392 393 395
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) |
397 |
396
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) |
398 |
390
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) |
399 |
|
elioore |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> x e. RR ) |
400 |
399
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. RR ) |
401 |
8
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) |
402 |
390
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR* ) |
403 |
402
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR* ) |
404 |
293 292
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR ) |
405 |
404
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR* ) |
406 |
405
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR* ) |
407 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
408 |
|
ioogtlb |
|- ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < x ) |
409 |
403 406 407 408
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < x ) |
410 |
398 400 401 409
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` i ) ) < ( X + x ) ) |
411 |
397 410
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + x ) ) |
412 |
388 411
|
chvarvv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + s ) ) |
413 |
191
|
breq1d |
|- ( x = s -> ( ( X + x ) < ( Q ` ( i + 1 ) ) <-> ( X + s ) < ( Q ` ( i + 1 ) ) ) ) |
414 |
386 413
|
imbi12d |
|- ( x = s -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) < ( Q ` ( i + 1 ) ) ) ) ) |
415 |
404
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) |
416 |
|
iooltub |
|- ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x < ( W ` ( i + 1 ) ) ) |
417 |
403 406 407 416
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x < ( W ` ( i + 1 ) ) ) |
418 |
400 415 401 417
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( X + ( W ` ( i + 1 ) ) ) ) |
419 |
404
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. CC ) |
420 |
389 419
|
addcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( ( W ` ( i + 1 ) ) + X ) ) |
421 |
293
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` ( i + 1 ) ) + X ) = ( ( ( Q ` ( i + 1 ) ) - X ) + X ) ) |
422 |
276
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
423 |
422 389
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) - X ) + X ) = ( Q ` ( i + 1 ) ) ) |
424 |
420 421 423
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
425 |
424
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
426 |
418 425
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) < ( Q ` ( i + 1 ) ) ) |
427 |
414 426
|
chvarvv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) < ( Q ` ( i + 1 ) ) ) |
428 |
377 379 384 412 427
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
429 |
191
|
cbvmptv |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + s ) ) |
430 |
429
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + s ) ) ) |
431 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
432 |
431
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
433 |
9 432
|
feqresmpt |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
434 |
433
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
435 |
|
fveq2 |
|- ( x = ( X + s ) -> ( F ` x ) = ( F ` ( X + s ) ) ) |
436 |
428 430 434 435
|
fmptco |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ) |
437 |
|
eqid |
|- ( x e. CC |-> ( X + x ) ) = ( x e. CC |-> ( X + x ) ) |
438 |
|
ssid |
|- CC C_ CC |
439 |
438
|
a1i |
|- ( ph -> CC C_ CC ) |
440 |
439 154 439
|
constcncfg |
|- ( ph -> ( x e. CC |-> X ) e. ( CC -cn-> CC ) ) |
441 |
|
cncfmptid |
|- ( ( CC C_ CC /\ CC C_ CC ) -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
442 |
438 438 441
|
mp2an |
|- ( x e. CC |-> x ) e. ( CC -cn-> CC ) |
443 |
442
|
a1i |
|- ( ph -> ( x e. CC |-> x ) e. ( CC -cn-> CC ) ) |
444 |
440 443
|
addcncf |
|- ( ph -> ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) ) |
445 |
444
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) ) |
446 |
|
ioosscn |
|- ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ CC |
447 |
446
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ CC ) |
448 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
449 |
448
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
450 |
376
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
451 |
378
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
452 |
8
|
adantr |
|- ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) |
453 |
399
|
adantl |
|- ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> x e. RR ) |
454 |
452 453
|
readdcld |
|- ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. RR ) |
455 |
454
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. RR ) |
456 |
450 451 455 411 426
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
457 |
437 445 447 449 456
|
cncfmptssg |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
458 |
457 12
|
cncfco |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
459 |
436 458
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
460 |
459
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
461 |
|
eqid |
|- ( s e. RR |-> ( ( D ` n ) ` s ) ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) |
462 |
82
|
feqmptd |
|- ( n e. NN -> ( D ` n ) = ( s e. RR |-> ( ( D ` n ) ` s ) ) ) |
463 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( RR -cn-> RR ) C_ ( RR -cn-> CC ) ) |
464 |
47 438 463
|
mp2an |
|- ( RR -cn-> RR ) C_ ( RR -cn-> CC ) |
465 |
4
|
dirkercncf |
|- ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) |
466 |
464 465
|
sselid |
|- ( n e. NN -> ( D ` n ) e. ( RR -cn-> CC ) ) |
467 |
462 466
|
eqeltrrd |
|- ( n e. NN -> ( s e. RR |-> ( ( D ` n ) ` s ) ) e. ( RR -cn-> CC ) ) |
468 |
372
|
a1i |
|- ( n e. NN -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR ) |
469 |
438
|
a1i |
|- ( n e. NN -> CC C_ CC ) |
470 |
|
cncff |
|- ( ( D ` n ) e. ( RR -cn-> CC ) -> ( D ` n ) : RR --> CC ) |
471 |
466 470
|
syl |
|- ( n e. NN -> ( D ` n ) : RR --> CC ) |
472 |
471
|
adantr |
|- ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( D ` n ) : RR --> CC ) |
473 |
381
|
adantl |
|- ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. RR ) |
474 |
472 473
|
ffvelrnd |
|- ( ( n e. NN /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( D ` n ) ` s ) e. CC ) |
475 |
461 467 468 469 474
|
cncfmptssg |
|- ( n e. NN -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( D ` n ) ` s ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
476 |
475
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( D ` n ) ` s ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
477 |
460 476
|
mulcncf |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
478 |
375 477
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
479 |
453 205
|
syldan |
|- ( ( ph /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + x ) ) e. CC ) |
480 |
479
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + x ) ) e. CC ) |
481 |
|
eqid |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) |
482 |
480 481
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) |
483 |
482
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) |
484 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) : RR --> RR ) |
485 |
372
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ RR ) |
486 |
484 485
|
fssresd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> RR ) |
487 |
47
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
488 |
486 487
|
fssd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> CC ) |
489 |
|
eqid |
|- ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) |
490 |
|
fdm |
|- ( F : RR --> CC -> dom F = RR ) |
491 |
49 490
|
syl |
|- ( ph -> dom F = RR ) |
492 |
431 491
|
sseqtrrid |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
493 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
494 |
492 493
|
sylib |
|- ( ph -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
495 |
494
|
eqcomd |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
496 |
495
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
497 |
456 496
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
498 |
273
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
499 |
498 411
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) =/= ( Q ` i ) ) |
500 |
|
eldifsn |
|- ( ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) <-> ( ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( X + x ) =/= ( Q ` i ) ) ) |
501 |
497 499 500
|
sylanbrc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
502 |
501
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
503 |
|
eqid |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |
504 |
503
|
rnmptss |
|- ( A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
505 |
502 504
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` i ) } ) ) |
506 |
|
eqidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) |
507 |
|
oveq2 |
|- ( x = ( W ` i ) -> ( X + x ) = ( X + ( W ` i ) ) ) |
508 |
507
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( W ` i ) ) -> ( X + x ) = ( X + ( W ` i ) ) ) |
509 |
390
|
leidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) <_ ( W ` i ) ) |
510 |
390 404 294
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) <_ ( W ` ( i + 1 ) ) ) |
511 |
390 404 390 509 510
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
512 |
396 273
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) e. RR ) |
513 |
506 508 511 512
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) = ( X + ( W ` i ) ) ) |
514 |
396
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` i ) ) = ( Q ` i ) ) |
515 |
513 514
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) ) |
516 |
390 404
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR ) |
517 |
516 47
|
sstrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ CC ) |
518 |
517
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) |
519 |
|
rescncf |
|- ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ CC -> ( ( x e. CC |-> ( X + x ) ) e. ( CC -cn-> CC ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) ) |
520 |
517 445 519
|
sylc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. CC |-> ( X + x ) ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
521 |
518 520
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> CC ) ) |
522 |
521 511
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` i ) ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) |
523 |
515 522
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) |
524 |
|
ioossicc |
|- ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |
525 |
|
resmpt |
|- ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) |
526 |
524 525
|
ax-mp |
|- ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |
527 |
526
|
eqcomi |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
528 |
527
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
529 |
528
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) = ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
530 |
154
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> X e. CC ) |
531 |
390
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) |
532 |
404
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) |
533 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
534 |
|
eliccre |
|- ( ( ( W ` i ) e. RR /\ ( W ` ( i + 1 ) ) e. RR /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. RR ) |
535 |
531 532 533 534
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. RR ) |
536 |
535
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> x e. CC ) |
537 |
530 536
|
addcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. CC ) |
538 |
|
eqid |
|- ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |
539 |
537 538
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) --> CC ) |
540 |
390 404 294 539
|
limciccioolb |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) |
541 |
529 540
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) |
542 |
523 541
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` i ) ) ) |
543 |
505 542 13
|
limccog |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` i ) ) ) |
544 |
49 432
|
fssresd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
545 |
544
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
546 |
456 503
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
547 |
|
fcompt |
|- ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) : ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) --> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) ) |
548 |
545 546 547
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) ) |
549 |
|
eqidd |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) |
550 |
|
oveq2 |
|- ( x = y -> ( X + x ) = ( X + y ) ) |
551 |
550
|
adantl |
|- ( ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) /\ x = y ) -> ( X + x ) = ( X + y ) ) |
552 |
|
simpr |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
553 |
8
|
adantr |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) |
554 |
372 552
|
sselid |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. RR ) |
555 |
553 554
|
readdcld |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. RR ) |
556 |
549 551 552 555
|
fvmptd |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) = ( X + y ) ) |
557 |
556
|
fveq2d |
|- ( ( ph /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) ) |
558 |
557
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) ) |
559 |
376
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
560 |
378
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
561 |
555
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. RR ) |
562 |
396
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( X + ( W ` i ) ) ) |
563 |
390
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR ) |
564 |
554
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. RR ) |
565 |
8
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> X e. RR ) |
566 |
402
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) e. RR* ) |
567 |
405
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR* ) |
568 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
569 |
|
ioogtlb |
|- ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < y ) |
570 |
566 567 568 569
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` i ) < y ) |
571 |
563 564 565 570
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` i ) ) < ( X + y ) ) |
572 |
562 571
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( X + y ) ) |
573 |
404
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( W ` ( i + 1 ) ) e. RR ) |
574 |
|
iooltub |
|- ( ( ( W ` i ) e. RR* /\ ( W ` ( i + 1 ) ) e. RR* /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y < ( W ` ( i + 1 ) ) ) |
575 |
566 567 568 574
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> y < ( W ` ( i + 1 ) ) ) |
576 |
564 573 565 575
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) < ( X + ( W ` ( i + 1 ) ) ) ) |
577 |
424
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
578 |
576 577
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) < ( Q ` ( i + 1 ) ) ) |
579 |
559 560 561 572 578
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + y ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
580 |
|
fvres |
|- ( ( X + y ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) |
581 |
579 580
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( X + y ) ) = ( F ` ( X + y ) ) ) |
582 |
558 581
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) = ( F ` ( X + y ) ) ) |
583 |
582
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + y ) ) ) ) |
584 |
550
|
fveq2d |
|- ( x = y -> ( F ` ( X + x ) ) = ( F ` ( X + y ) ) ) |
585 |
584
|
cbvmptv |
|- ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + y ) ) ) |
586 |
583 585
|
eqtr4di |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( y e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` y ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) |
587 |
548 586
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) |
588 |
587
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` i ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) |
589 |
543 588
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) |
590 |
589
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` i ) ) ) |
591 |
|
fvres |
|- ( ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) = ( ( D ` n ) ` ( W ` i ) ) ) |
592 |
511 591
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) = ( ( D ` n ) ` ( W ` i ) ) ) |
593 |
592
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) ) |
594 |
593
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) ) |
595 |
516
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR ) |
596 |
465
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) e. ( RR -cn-> RR ) ) |
597 |
|
rescncf |
|- ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) C_ RR -> ( ( D ` n ) e. ( RR -cn-> RR ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> RR ) ) ) |
598 |
595 596 597
|
sylc |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) e. ( ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -cn-> RR ) ) |
599 |
511
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
600 |
598 599
|
cnlimci |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
601 |
594 600
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
602 |
524
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
603 |
602
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
604 |
603
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
605 |
604
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
606 |
605
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
607 |
390
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) e. RR ) |
608 |
404
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. RR ) |
609 |
294
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` i ) < ( W ` ( i + 1 ) ) ) |
610 |
471
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( D ` n ) : RR --> CC ) |
611 |
610 595
|
fssresd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) : ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) --> CC ) |
612 |
607 608 609 611
|
limciccioolb |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
613 |
606 612
|
eqtr2d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
614 |
601 613
|
eleqtrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` i ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
615 |
483 488 489 590 614
|
mullimcf |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( ( D ` n ) ` ( W ` i ) ) ) e. ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` i ) ) ) |
616 |
|
eqidd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) = ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ) |
617 |
192
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) /\ x = s ) -> ( F ` ( X + x ) ) = ( F ` ( X + s ) ) ) |
618 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) |
619 |
49
|
adantr |
|- ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> F : RR --> CC ) |
620 |
619 383
|
ffvelrnd |
|- ( ( ph /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
621 |
620
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
622 |
616 617 618 621
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) = ( F ` ( X + s ) ) ) |
623 |
622
|
adantllr |
|- ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) = ( F ` ( X + s ) ) ) |
624 |
|
fvres |
|- ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) = ( ( D ` n ) ` s ) ) |
625 |
624
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) = ( ( D ` n ) ` s ) ) |
626 |
623 625
|
oveq12d |
|- ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
627 |
626
|
eqcomd |
|- ( ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) |
628 |
627
|
mpteq2dva |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) ) |
629 |
375 628
|
eqtr2d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) = ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
630 |
629
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` i ) ) = ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
631 |
615 630
|
eleqtrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( ( D ` n ) ` ( W ` i ) ) ) e. ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` i ) ) ) |
632 |
455 426
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) =/= ( Q ` ( i + 1 ) ) ) |
633 |
|
eldifsn |
|- ( ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) <-> ( ( X + x ) e. dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( X + x ) =/= ( Q ` ( i + 1 ) ) ) ) |
634 |
497 632 633
|
sylanbrc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) -> ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
635 |
634
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
636 |
503
|
rnmptss |
|- ( A. x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ( X + x ) e. ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
637 |
635 636
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) C_ ( dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) \ { ( Q ` ( i + 1 ) ) } ) ) |
638 |
404
|
leidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) <_ ( W ` ( i + 1 ) ) ) |
639 |
390 404 404 510 638
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
640 |
521 639
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) e. ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) |
641 |
|
oveq2 |
|- ( x = ( W ` ( i + 1 ) ) -> ( X + x ) = ( X + ( W ` ( i + 1 ) ) ) ) |
642 |
641
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( W ` ( i + 1 ) ) ) -> ( X + x ) = ( X + ( W ` ( i + 1 ) ) ) ) |
643 |
277 404
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( W ` ( i + 1 ) ) ) e. RR ) |
644 |
506 642 639 643
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) = ( X + ( W ` ( i + 1 ) ) ) ) |
645 |
644 424
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ` ( W ` ( i + 1 ) ) ) = ( Q ` ( i + 1 ) ) ) |
646 |
528
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
647 |
390 404 294 539
|
limcicciooub |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) |
648 |
646 647
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) |
649 |
640 645 648
|
3eltr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) limCC ( W ` ( i + 1 ) ) ) ) |
650 |
637 649 14
|
limccog |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
651 |
587
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) o. ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
652 |
650 651
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
653 |
652
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
654 |
639
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |
655 |
598 654
|
cnlimci |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
656 |
|
fvres |
|- ( ( W ` ( i + 1 ) ) e. ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) = ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) |
657 |
654 656
|
syl |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) ` ( W ` ( i + 1 ) ) ) = ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) |
658 |
607 608 609 611
|
limcicciooub |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
659 |
658
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
660 |
|
resabs1 |
|- ( ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) C_ ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
661 |
524 660
|
mp1i |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) = ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ) |
662 |
661
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
663 |
659 662
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( ( D ` n ) |` ( ( W ` i ) [,] ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
664 |
655 657 663
|
3eltr3d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) e. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
665 |
483 488 489 653 664
|
mullimcf |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
666 |
629
|
oveq1d |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( ( ( x e. ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) |-> ( F ` ( X + x ) ) ) ` s ) x. ( ( ( D ` n ) |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) ` s ) ) ) limCC ( W ` ( i + 1 ) ) ) = ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
667 |
665 666
|
eleqtrd |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( ( D ` n ) ` ( W ` ( i + 1 ) ) ) ) e. ( ( G |` ( ( W ` i ) (,) ( W ` ( i + 1 ) ) ) ) limCC ( W ` ( i + 1 ) ) ) ) |
668 |
130 133 225 226 16 114 300 211 369 478 631 667
|
fourierdlem110 |
|- ( ( ph /\ n e. NN ) -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x ) |
669 |
668
|
eqcomd |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x = S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x ) |
670 |
129
|
recnd |
|- ( ph -> ( -u _pi - X ) e. CC ) |
671 |
670 154
|
subnegd |
|- ( ph -> ( ( -u _pi - X ) - -u X ) = ( ( -u _pi - X ) + X ) ) |
672 |
156 154
|
npcand |
|- ( ph -> ( ( -u _pi - X ) + X ) = -u _pi ) |
673 |
671 672
|
eqtrd |
|- ( ph -> ( ( -u _pi - X ) - -u X ) = -u _pi ) |
674 |
132
|
recnd |
|- ( ph -> ( _pi - X ) e. CC ) |
675 |
674 154
|
subnegd |
|- ( ph -> ( ( _pi - X ) - -u X ) = ( ( _pi - X ) + X ) ) |
676 |
155 154
|
npcand |
|- ( ph -> ( ( _pi - X ) + X ) = _pi ) |
677 |
675 676
|
eqtrd |
|- ( ph -> ( ( _pi - X ) - -u X ) = _pi ) |
678 |
673 677
|
oveq12d |
|- ( ph -> ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) = ( -u _pi [,] _pi ) ) |
679 |
678
|
itgeq1d |
|- ( ph -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) |
680 |
679
|
adantr |
|- ( ( ph /\ n e. NN ) -> S. ( ( ( -u _pi - X ) - -u X ) [,] ( ( _pi - X ) - -u X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) |
681 |
669 680
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) [,] ( _pi - X ) ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) |
682 |
|
fveq2 |
|- ( x = s -> ( G ` x ) = ( G ` s ) ) |
683 |
682
|
cbvitgv |
|- S. ( -u _pi (,) _pi ) ( G ` x ) _d x = S. ( -u _pi (,) _pi ) ( G ` s ) _d s |
684 |
211
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> G : RR --> CC ) |
685 |
44
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) |
686 |
684 685
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ x e. ( -u _pi [,] _pi ) ) -> ( G ` x ) e. CC ) |
687 |
76 77 686
|
itgioo |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( G ` x ) _d x = S. ( -u _pi [,] _pi ) ( G ` x ) _d x ) |
688 |
|
elioore |
|- ( s e. ( -u _pi (,) _pi ) -> s e. RR ) |
689 |
688
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> s e. RR ) |
690 |
49
|
adantr |
|- ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> F : RR --> CC ) |
691 |
8
|
adantr |
|- ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> X e. RR ) |
692 |
688
|
adantl |
|- ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> s e. RR ) |
693 |
691 692
|
readdcld |
|- ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> ( X + s ) e. RR ) |
694 |
690 693
|
ffvelrnd |
|- ( ( ph /\ s e. ( -u _pi (,) _pi ) ) -> ( F ` ( X + s ) ) e. CC ) |
695 |
694
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( F ` ( X + s ) ) e. CC ) |
696 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( D ` n ) : RR --> RR ) |
697 |
696 689
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
698 |
697
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( D ` n ) ` s ) e. CC ) |
699 |
695 698
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
700 |
689 699 197
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) _pi ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
701 |
700
|
itgeq2dv |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( G ` s ) _d s = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
702 |
683 687 701
|
3eqtr3a |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi [,] _pi ) ( G ` x ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
703 |
224 681 702
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> S. ( ( -u _pi - X ) (,) ( _pi - X ) ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
704 |
75 178 703
|
3eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) = S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
705 |
77
|
renegcld |
|- ( ( ph /\ n e. NN ) -> -u _pi e. RR ) |
706 |
|
0red |
|- ( ( ph /\ n e. NN ) -> 0 e. RR ) |
707 |
|
0re |
|- 0 e. RR |
708 |
|
negpilt0 |
|- -u _pi < 0 |
709 |
39 707 708
|
ltleii |
|- -u _pi <_ 0 |
710 |
709
|
a1i |
|- ( ( ph /\ n e. NN ) -> -u _pi <_ 0 ) |
711 |
|
pipos |
|- 0 < _pi |
712 |
707 38 711
|
ltleii |
|- 0 <_ _pi |
713 |
712
|
a1i |
|- ( ( ph /\ n e. NN ) -> 0 <_ _pi ) |
714 |
76 77 706 710 713
|
eliccd |
|- ( ( ph /\ n e. NN ) -> 0 e. ( -u _pi [,] _pi ) ) |
715 |
|
ioossicc |
|- ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) |
716 |
715
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) ) |
717 |
|
ioombl |
|- ( -u _pi (,) 0 ) e. dom vol |
718 |
717
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) e. dom vol ) |
719 |
49
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> F : RR --> CC ) |
720 |
8
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> X e. RR ) |
721 |
39
|
a1i |
|- ( s e. ( -u _pi [,] 0 ) -> -u _pi e. RR ) |
722 |
|
0red |
|- ( s e. ( -u _pi [,] 0 ) -> 0 e. RR ) |
723 |
|
id |
|- ( s e. ( -u _pi [,] 0 ) -> s e. ( -u _pi [,] 0 ) ) |
724 |
|
eliccre |
|- ( ( -u _pi e. RR /\ 0 e. RR /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) |
725 |
721 722 723 724
|
syl3anc |
|- ( s e. ( -u _pi [,] 0 ) -> s e. RR ) |
726 |
725
|
adantl |
|- ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) |
727 |
720 726
|
readdcld |
|- ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> ( X + s ) e. RR ) |
728 |
719 727
|
ffvelrnd |
|- ( ( ph /\ s e. ( -u _pi [,] 0 ) ) -> ( F ` ( X + s ) ) e. CC ) |
729 |
728
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( F ` ( X + s ) ) e. CC ) |
730 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( D ` n ) : RR --> RR ) |
731 |
725
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> s e. RR ) |
732 |
730 731
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( D ` n ) ` s ) e. RR ) |
733 |
732
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( D ` n ) ` s ) e. CC ) |
734 |
729 733
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
735 |
731 734 197
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
736 |
735
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) |
737 |
736
|
mpteq2dva |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( -u _pi [,] 0 ) |-> ( G ` s ) ) ) |
738 |
306
|
oveq2d |
|- ( ph -> ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( s + T ) ) |
739 |
738
|
ad2antrr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) = ( s + T ) ) |
740 |
739
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` ( s + T ) ) ) |
741 |
11
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> G = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) ) ) |
742 |
|
oveq2 |
|- ( x = ( s + T ) -> ( X + x ) = ( X + ( s + T ) ) ) |
743 |
742
|
fveq2d |
|- ( x = ( s + T ) -> ( F ` ( X + x ) ) = ( F ` ( X + ( s + T ) ) ) ) |
744 |
|
fveq2 |
|- ( x = ( s + T ) -> ( ( D ` n ) ` x ) = ( ( D ` n ) ` ( s + T ) ) ) |
745 |
743 744
|
oveq12d |
|- ( x = ( s + T ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) |
746 |
745
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ s e. RR ) /\ x = ( s + T ) ) -> ( ( F ` ( X + x ) ) x. ( ( D ` n ) ` x ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) |
747 |
|
simpr |
|- ( ( ph /\ s e. RR ) -> s e. RR ) |
748 |
317
|
a1i |
|- ( ( ph /\ s e. RR ) -> T e. RR ) |
749 |
747 748
|
readdcld |
|- ( ( ph /\ s e. RR ) -> ( s + T ) e. RR ) |
750 |
749
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( s + T ) e. RR ) |
751 |
49
|
adantr |
|- ( ( ph /\ s e. RR ) -> F : RR --> CC ) |
752 |
8
|
adantr |
|- ( ( ph /\ s e. RR ) -> X e. RR ) |
753 |
752 749
|
readdcld |
|- ( ( ph /\ s e. RR ) -> ( X + ( s + T ) ) e. RR ) |
754 |
751 753
|
ffvelrnd |
|- ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) e. CC ) |
755 |
754
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) e. CC ) |
756 |
82
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( D ` n ) : RR --> RR ) |
757 |
756 750
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) e. RR ) |
758 |
757
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) e. CC ) |
759 |
755 758
|
mulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) e. CC ) |
760 |
741 746 750 759
|
fvmptd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + T ) ) = ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) ) |
761 |
154
|
adantr |
|- ( ( ph /\ s e. RR ) -> X e. CC ) |
762 |
747
|
recnd |
|- ( ( ph /\ s e. RR ) -> s e. CC ) |
763 |
319
|
adantr |
|- ( ( ph /\ s e. RR ) -> T e. CC ) |
764 |
761 762 763
|
addassd |
|- ( ( ph /\ s e. RR ) -> ( ( X + s ) + T ) = ( X + ( s + T ) ) ) |
765 |
764
|
eqcomd |
|- ( ( ph /\ s e. RR ) -> ( X + ( s + T ) ) = ( ( X + s ) + T ) ) |
766 |
765
|
fveq2d |
|- ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( ( X + s ) + T ) ) ) |
767 |
752 747
|
readdcld |
|- ( ( ph /\ s e. RR ) -> ( X + s ) e. RR ) |
768 |
|
simpl |
|- ( ( ph /\ s e. RR ) -> ph ) |
769 |
768 767
|
jca |
|- ( ( ph /\ s e. RR ) -> ( ph /\ ( X + s ) e. RR ) ) |
770 |
|
eleq1 |
|- ( x = ( X + s ) -> ( x e. RR <-> ( X + s ) e. RR ) ) |
771 |
770
|
anbi2d |
|- ( x = ( X + s ) -> ( ( ph /\ x e. RR ) <-> ( ph /\ ( X + s ) e. RR ) ) ) |
772 |
|
oveq1 |
|- ( x = ( X + s ) -> ( x + T ) = ( ( X + s ) + T ) ) |
773 |
772
|
fveq2d |
|- ( x = ( X + s ) -> ( F ` ( x + T ) ) = ( F ` ( ( X + s ) + T ) ) ) |
774 |
773 435
|
eqeq12d |
|- ( x = ( X + s ) -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) |
775 |
771 774
|
imbi12d |
|- ( x = ( X + s ) -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ ( X + s ) e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) ) |
776 |
775 10
|
vtoclg |
|- ( ( X + s ) e. RR -> ( ( ph /\ ( X + s ) e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) ) |
777 |
767 769 776
|
sylc |
|- ( ( ph /\ s e. RR ) -> ( F ` ( ( X + s ) + T ) ) = ( F ` ( X + s ) ) ) |
778 |
766 777
|
eqtrd |
|- ( ( ph /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( X + s ) ) ) |
779 |
778
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + ( s + T ) ) ) = ( F ` ( X + s ) ) ) |
780 |
4 15
|
dirkerper |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) = ( ( D ` n ) ` s ) ) |
781 |
780
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` ( s + T ) ) = ( ( D ` n ) ` s ) ) |
782 |
779 781
|
oveq12d |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
783 |
|
simpr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> s e. RR ) |
784 |
782 759
|
eqeltrrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
785 |
783 784 197
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
786 |
785
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) |
787 |
782 786
|
eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + ( s + T ) ) ) x. ( ( D ` n ) ` ( s + T ) ) ) = ( G ` s ) ) |
788 |
740 760 787
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( G ` ( s + ( ( _pi - X ) - ( -u _pi - X ) ) ) ) = ( G ` s ) ) |
789 |
|
0ltpnf |
|- 0 < +oo |
790 |
|
pnfxr |
|- +oo e. RR* |
791 |
|
elioo2 |
|- ( ( -u _pi e. RR* /\ +oo e. RR* ) -> ( 0 e. ( -u _pi (,) +oo ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < +oo ) ) ) |
792 |
52 790 791
|
mp2an |
|- ( 0 e. ( -u _pi (,) +oo ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < +oo ) ) |
793 |
707 708 789 792
|
mpbir3an |
|- 0 e. ( -u _pi (,) +oo ) |
794 |
793
|
a1i |
|- ( ( ph /\ n e. NN ) -> 0 e. ( -u _pi (,) +oo ) ) |
795 |
16 225 114 300 211 788 478 631 667 76 794
|
fourierdlem105 |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( G ` s ) ) e. L^1 ) |
796 |
737 795
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
797 |
716 718 734 796
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi (,) 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
798 |
|
elioore |
|- ( s e. ( 0 (,) _pi ) -> s e. RR ) |
799 |
798
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> s e. RR ) |
800 |
799 784
|
syldan |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. CC ) |
801 |
799 800 197
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( G ` s ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
802 |
801
|
eqcomd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) = ( G ` s ) ) |
803 |
802
|
mpteq2dva |
|- ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( 0 (,) _pi ) |-> ( G ` s ) ) ) |
804 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
805 |
804
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) C_ ( 0 [,] _pi ) ) |
806 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
807 |
806
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) e. dom vol ) |
808 |
211
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> G : RR --> CC ) |
809 |
|
0red |
|- ( ( ph /\ s e. ( 0 [,] _pi ) ) -> 0 e. RR ) |
810 |
38
|
a1i |
|- ( ( ph /\ s e. ( 0 [,] _pi ) ) -> _pi e. RR ) |
811 |
|
simpr |
|- ( ( ph /\ s e. ( 0 [,] _pi ) ) -> s e. ( 0 [,] _pi ) ) |
812 |
|
eliccre |
|- ( ( 0 e. RR /\ _pi e. RR /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) |
813 |
809 810 811 812
|
syl3anc |
|- ( ( ph /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) |
814 |
813
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> s e. RR ) |
815 |
808 814
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 [,] _pi ) ) -> ( G ` s ) e. CC ) |
816 |
|
0xr |
|- 0 e. RR* |
817 |
816
|
a1i |
|- ( ( ph /\ n e. NN ) -> 0 e. RR* ) |
818 |
790
|
a1i |
|- ( ( ph /\ n e. NN ) -> +oo e. RR* ) |
819 |
711
|
a1i |
|- ( ( ph /\ n e. NN ) -> 0 < _pi ) |
820 |
|
ltpnf |
|- ( _pi e. RR -> _pi < +oo ) |
821 |
38 820
|
mp1i |
|- ( ( ph /\ n e. NN ) -> _pi < +oo ) |
822 |
817 818 77 819 821
|
eliood |
|- ( ( ph /\ n e. NN ) -> _pi e. ( 0 (,) +oo ) ) |
823 |
16 225 114 300 211 788 478 631 667 706 822
|
fourierdlem105 |
|- ( ( ph /\ n e. NN ) -> ( s e. ( 0 [,] _pi ) |-> ( G ` s ) ) e. L^1 ) |
824 |
805 807 815 823
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( G ` s ) ) e. L^1 ) |
825 |
803 824
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
826 |
705 77 714 699 797 825
|
itgsplitioo |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
827 |
704 826
|
eqtrd |
|- ( ( ph /\ n e. NN ) -> ( S ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |