Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem112.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem112.d |
|- D = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
3 |
|
fourierdlem112.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem112.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem112.q |
|- ( ph -> Q e. ( P ` M ) ) |
6 |
|
fourierdlem112.n |
|- N = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) |
7 |
|
fourierdlem112.v |
|- V = ( iota f f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) |
8 |
|
fourierdlem112.x |
|- ( ph -> X e. RR ) |
9 |
|
fourierdlem112.xran |
|- ( ph -> X e. ran V ) |
10 |
|
fourierdlem112.t |
|- T = ( 2 x. _pi ) |
11 |
|
fourierdlem112.fper |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
12 |
|
fourierdlem112.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
13 |
|
fourierdlem112.c |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
14 |
|
fourierdlem112.u |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
15 |
|
fourierdlem112.fdvcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
16 |
|
fourierdlem112.e |
|- ( ph -> E e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) |
17 |
|
fourierdlem112.i |
|- ( ph -> I e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) |
18 |
|
fourierdlem112.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
19 |
|
fourierdlem112.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
20 |
|
fourierdlem112.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
21 |
|
fourierdlem112.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
22 |
|
fourierdlem112.z |
|- Z = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
23 |
|
fourierdlem112.23 |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
24 |
|
fourierdlem112.fbd |
|- ( ph -> E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w ) |
25 |
|
fourierdlem112.fdvbd |
|- ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
26 |
|
fourierdlem112.25 |
|- ( ph -> X e. RR ) |
27 |
|
fveq2 |
|- ( n = j -> ( A ` n ) = ( A ` j ) ) |
28 |
|
oveq1 |
|- ( n = j -> ( n x. X ) = ( j x. X ) ) |
29 |
28
|
fveq2d |
|- ( n = j -> ( cos ` ( n x. X ) ) = ( cos ` ( j x. X ) ) ) |
30 |
27 29
|
oveq12d |
|- ( n = j -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) ) |
31 |
|
fveq2 |
|- ( n = j -> ( B ` n ) = ( B ` j ) ) |
32 |
28
|
fveq2d |
|- ( n = j -> ( sin ` ( n x. X ) ) = ( sin ` ( j x. X ) ) ) |
33 |
31 32
|
oveq12d |
|- ( n = j -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) |
34 |
30 33
|
oveq12d |
|- ( n = j -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) |
35 |
34
|
cbvmptv |
|- ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) |
36 |
23 35
|
eqtri |
|- S = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) |
37 |
|
seqeq3 |
|- ( S = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) -> seq 1 ( + , S ) = seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ) |
38 |
36 37
|
mp1i |
|- ( ph -> seq 1 ( + , S ) = seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ) |
39 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
40 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
41 |
|
nfv |
|- F/ n ph |
42 |
|
nfcv |
|- F/_ n NN |
43 |
|
nfcv |
|- F/_ n ( -u _pi (,) 0 ) |
44 |
|
nfcv |
|- F/_ n ( F ` ( X + s ) ) |
45 |
|
nfcv |
|- F/_ n x. |
46 |
|
nfcv |
|- F/_ n ( ( D ` m ) ` s ) |
47 |
44 45 46
|
nfov |
|- F/_ n ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) |
48 |
43 47
|
nfitg |
|- F/_ n S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s |
49 |
42 48
|
nfmpt |
|- F/_ n ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) |
50 |
|
nfcv |
|- F/_ n ( 0 (,) _pi ) |
51 |
50 47
|
nfitg |
|- F/_ n S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s |
52 |
42 51
|
nfmpt |
|- F/_ n ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) |
53 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
54 |
20 53
|
nfcxfr |
|- F/_ n A |
55 |
|
nfcv |
|- F/_ n 0 |
56 |
54 55
|
nffv |
|- F/_ n ( A ` 0 ) |
57 |
|
nfcv |
|- F/_ n / |
58 |
|
nfcv |
|- F/_ n 2 |
59 |
56 57 58
|
nfov |
|- F/_ n ( ( A ` 0 ) / 2 ) |
60 |
|
nfcv |
|- F/_ n + |
61 |
|
nfcv |
|- F/_ n ( 1 ... m ) |
62 |
61
|
nfsum1 |
|- F/_ n sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) |
63 |
59 60 62
|
nfov |
|- F/_ n ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
64 |
42 63
|
nfmpt |
|- F/_ n ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
65 |
22 64
|
nfcxfr |
|- F/_ n Z |
66 |
|
eqid |
|- ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
67 |
|
picn |
|- _pi e. CC |
68 |
67
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
69 |
67 67
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
70 |
68 10 69
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
71 |
|
pire |
|- _pi e. RR |
72 |
71
|
a1i |
|- ( ph -> _pi e. RR ) |
73 |
72
|
renegcld |
|- ( ph -> -u _pi e. RR ) |
74 |
73 26
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
75 |
72 26
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
76 |
|
negpilt0 |
|- -u _pi < 0 |
77 |
|
pipos |
|- 0 < _pi |
78 |
71
|
renegcli |
|- -u _pi e. RR |
79 |
|
0re |
|- 0 e. RR |
80 |
78 79 71
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
81 |
76 77 80
|
mp2an |
|- -u _pi < _pi |
82 |
81
|
a1i |
|- ( ph -> -u _pi < _pi ) |
83 |
73 72 26 82
|
ltadd1dd |
|- ( ph -> ( -u _pi + X ) < ( _pi + X ) ) |
84 |
|
oveq1 |
|- ( y = x -> ( y + ( k x. T ) ) = ( x + ( k x. T ) ) ) |
85 |
84
|
eleq1d |
|- ( y = x -> ( ( y + ( k x. T ) ) e. ran Q <-> ( x + ( k x. T ) ) e. ran Q ) ) |
86 |
85
|
rexbidv |
|- ( y = x -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. k e. ZZ ( x + ( k x. T ) ) e. ran Q ) ) |
87 |
86
|
cbvrabv |
|- { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { x e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } |
88 |
87
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { x e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( x + ( k x. T ) ) e. ran Q } ) |
89 |
70 3 4 5 74 75 83 66 88 6 7
|
fourierdlem54 |
|- ( ph -> ( ( N e. NN /\ V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) /\ V Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
90 |
89
|
simpld |
|- ( ph -> ( N e. NN /\ V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) ) |
91 |
90
|
simpld |
|- ( ph -> N e. NN ) |
92 |
90
|
simprd |
|- ( ph -> V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) |
93 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> F : RR --> RR ) |
94 |
|
fveq2 |
|- ( i = j -> ( p ` i ) = ( p ` j ) ) |
95 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
96 |
95
|
fveq2d |
|- ( i = j -> ( p ` ( i + 1 ) ) = ( p ` ( j + 1 ) ) ) |
97 |
94 96
|
breq12d |
|- ( i = j -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
98 |
97
|
cbvralvw |
|- ( A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) |
99 |
98
|
anbi2i |
|- ( ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) |
100 |
99
|
a1i |
|- ( p e. ( RR ^m ( 0 ... n ) ) -> ( ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) ) ) |
101 |
100
|
rabbiia |
|- { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } |
102 |
101
|
mpteq2i |
|- ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
103 |
3 102
|
eqtri |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. j e. ( 0 ..^ n ) ( p ` j ) < ( p ` ( j + 1 ) ) ) } ) |
104 |
4
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> M e. NN ) |
105 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> Q e. ( P ` M ) ) |
106 |
11
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
107 |
|
eleq1w |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
108 |
107
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ j e. ( 0 ..^ M ) ) ) ) |
109 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
110 |
95
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
111 |
109 110
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) |
112 |
111
|
reseq2d |
|- ( i = j -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) ) |
113 |
111
|
oveq1d |
|- ( i = j -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) = ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) |
114 |
112 113
|
eleq12d |
|- ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) |
115 |
108 114
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) ) |
116 |
115 12
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) |
117 |
116
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) |
118 |
74
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( -u _pi + X ) e. RR ) |
119 |
74
|
rexrd |
|- ( ph -> ( -u _pi + X ) e. RR* ) |
120 |
|
pnfxr |
|- +oo e. RR* |
121 |
120
|
a1i |
|- ( ph -> +oo e. RR* ) |
122 |
75
|
ltpnfd |
|- ( ph -> ( _pi + X ) < +oo ) |
123 |
119 121 75 83 122
|
eliood |
|- ( ph -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) |
124 |
123
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) |
125 |
|
id |
|- ( i e. ( 0 ..^ N ) -> i e. ( 0 ..^ N ) ) |
126 |
6
|
oveq2i |
|- ( 0 ..^ N ) = ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) |
127 |
125 126
|
eleqtrdi |
|- ( i e. ( 0 ..^ N ) -> i e. ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) ) |
128 |
127
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> i e. ( 0 ..^ ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) ) |
129 |
6
|
oveq2i |
|- ( 0 ... N ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) |
130 |
|
isoeq4 |
|- ( ( 0 ... N ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) -> ( f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
131 |
129 130
|
ax-mp |
|- ( f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) |
132 |
131
|
iotabii |
|- ( iota f f Isom < , < ( ( 0 ... N ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) |
133 |
7 132
|
eqtri |
|- V = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) |
134 |
93 103 70 104 105 106 117 118 124 128 133
|
fourierdlem98 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
135 |
24
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w ) |
136 |
|
nfra1 |
|- F/ t A. t e. RR ( abs ` ( F ` t ) ) <_ w |
137 |
|
elioore |
|- ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> t e. RR ) |
138 |
|
rspa |
|- ( ( A. t e. RR ( abs ` ( F ` t ) ) <_ w /\ t e. RR ) -> ( abs ` ( F ` t ) ) <_ w ) |
139 |
137 138
|
sylan2 |
|- ( ( A. t e. RR ( abs ` ( F ` t ) ) <_ w /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( F ` t ) ) <_ w ) |
140 |
139
|
ex |
|- ( A. t e. RR ( abs ` ( F ` t ) ) <_ w -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( F ` t ) ) <_ w ) ) |
141 |
136 140
|
ralrimi |
|- ( A. t e. RR ( abs ` ( F ` t ) ) <_ w -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) |
142 |
141
|
reximi |
|- ( E. w e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ w -> E. w e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) |
143 |
135 142
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. w e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( F ` t ) ) <_ w ) |
144 |
|
ssid |
|- RR C_ RR |
145 |
|
dvfre |
|- ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
146 |
1 144 145
|
sylancl |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
147 |
146
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
148 |
|
eqid |
|- ( RR _D F ) = ( RR _D F ) |
149 |
71
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> _pi e. RR ) |
150 |
78
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> -u _pi e. RR ) |
151 |
111
|
reseq2d |
|- ( i = j -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) ) |
152 |
151 113
|
eleq12d |
|- ( i = j -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) <-> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) |
153 |
108 152
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) ) ) |
154 |
153 15
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) |
155 |
154
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) e. ( ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) -cn-> CC ) ) |
156 |
73 8
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
157 |
156
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( -u _pi + X ) e. RR ) |
158 |
156
|
rexrd |
|- ( ph -> ( -u _pi + X ) e. RR* ) |
159 |
72 8
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
160 |
73 72 8 82
|
ltadd1dd |
|- ( ph -> ( -u _pi + X ) < ( _pi + X ) ) |
161 |
159
|
ltpnfd |
|- ( ph -> ( _pi + X ) < +oo ) |
162 |
158 121 159 160 161
|
eliood |
|- ( ph -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) |
163 |
162
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( _pi + X ) e. ( ( -u _pi + X ) (,) +oo ) ) |
164 |
|
oveq1 |
|- ( k = h -> ( k x. T ) = ( h x. T ) ) |
165 |
164
|
oveq2d |
|- ( k = h -> ( y + ( k x. T ) ) = ( y + ( h x. T ) ) ) |
166 |
165
|
eleq1d |
|- ( k = h -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( h x. T ) ) e. ran Q ) ) |
167 |
166
|
cbvrexvw |
|- ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) |
168 |
167
|
rgenw |
|- A. y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) |
169 |
|
rabbi |
|- ( A. y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. h e. ZZ ( y + ( h x. T ) ) e. ran Q ) <-> { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) |
170 |
168 169
|
mpbi |
|- { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } |
171 |
170
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) |
172 |
|
isoeq5 |
|- ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) ) |
173 |
171 172
|
ax-mp |
|- ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) |
174 |
173
|
iotabii |
|- ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) |
175 |
133 174
|
eqtri |
|- V = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. h e. ZZ ( y + ( h x. T ) ) e. ran Q } ) ) ) |
176 |
|
eleq1w |
|- ( v = u -> ( v e. dom ( RR _D F ) <-> u e. dom ( RR _D F ) ) ) |
177 |
|
fveq2 |
|- ( v = u -> ( ( RR _D F ) ` v ) = ( ( RR _D F ) ` u ) ) |
178 |
176 177
|
ifbieq1d |
|- ( v = u -> if ( v e. dom ( RR _D F ) , ( ( RR _D F ) ` v ) , 0 ) = if ( u e. dom ( RR _D F ) , ( ( RR _D F ) ` u ) , 0 ) ) |
179 |
178
|
cbvmptv |
|- ( v e. RR |-> if ( v e. dom ( RR _D F ) , ( ( RR _D F ) ` v ) , 0 ) ) = ( u e. RR |-> if ( u e. dom ( RR _D F ) , ( ( RR _D F ) ` u ) , 0 ) ) |
180 |
93 148 103 149 150 70 104 105 106 155 157 163 128 175 179
|
fourierdlem97 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
181 |
|
cncff |
|- ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) |
182 |
|
fdm |
|- ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
183 |
180 181 182
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
184 |
|
ssdmres |
|- ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
185 |
183 184
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
186 |
147 185
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
187 |
|
ax-resscn |
|- RR C_ CC |
188 |
187
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> RR C_ CC ) |
189 |
|
cncffvrn |
|- ( ( RR C_ CC /\ ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) ) |
190 |
188 180 189
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) ) |
191 |
186 190
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) ) |
192 |
25
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
193 |
|
nfv |
|- F/ t ( ph /\ i e. ( 0 ..^ N ) ) |
194 |
|
nfra1 |
|- F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z |
195 |
193 194
|
nfan |
|- F/ t ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
196 |
|
fvres |
|- ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
197 |
196
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
198 |
197
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
199 |
198
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
200 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
201 |
185
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) |
202 |
201
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) |
203 |
|
rspa |
|- ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
204 |
200 202 203
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
205 |
199 204
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) |
206 |
205
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) |
207 |
195 206
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) |
208 |
207
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) |
209 |
208
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) ) |
210 |
192 209
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) |
211 |
|
nfra1 |
|- F/ t A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z |
212 |
196
|
eqcomd |
|- ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( RR _D F ) ` t ) = ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) |
213 |
212
|
fveq2d |
|- ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) = ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) ) |
214 |
213
|
adantl |
|- ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) = ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) ) |
215 |
|
rspa |
|- ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z ) |
216 |
214 215
|
eqbrtrd |
|- ( ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z /\ t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
217 |
216
|
ex |
|- ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> ( t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) |
218 |
211 217
|
ralrimi |
|- ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
219 |
218
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) |
220 |
219
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> ( E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) ) |
221 |
210 220
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> E. z e. RR A. t e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
222 |
|
nfv |
|- F/ i ( ph /\ j e. ( 0 ..^ M ) ) |
223 |
|
nfcsb1v |
|- F/_ i [_ j / i ]_ C |
224 |
223
|
nfel1 |
|- F/ i [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) |
225 |
222 224
|
nfim |
|- F/ i ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) |
226 |
|
csbeq1a |
|- ( i = j -> C = [_ j / i ]_ C ) |
227 |
112 109
|
oveq12d |
|- ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) |
228 |
226 227
|
eleq12d |
|- ( i = j -> ( C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) <-> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) ) |
229 |
108 228
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) ) ) |
230 |
225 229 13
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) |
231 |
230
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ C e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` j ) ) ) |
232 |
93 103 70 104 105 106 117 231 118 124 128 133
|
fourierdlem96 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> if ( ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) = ( Q ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ C ) ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
233 |
|
nfcsb1v |
|- F/_ i [_ j / i ]_ U |
234 |
233
|
nfel1 |
|- F/ i [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) |
235 |
222 234
|
nfim |
|- F/ i ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) |
236 |
|
csbeq1a |
|- ( i = j -> U = [_ j / i ]_ U ) |
237 |
112 110
|
oveq12d |
|- ( i = j -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) |
238 |
236 237
|
eleq12d |
|- ( i = j -> ( U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) <-> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) ) |
239 |
108 238
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) ) ) |
240 |
235 239 14
|
chvarfv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) |
241 |
240
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ N ) ) /\ j e. ( 0 ..^ M ) ) -> [_ j / i ]_ U e. ( ( F |` ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) limCC ( Q ` ( j + 1 ) ) ) ) |
242 |
93 103 70 104 105 106 117 241 157 163 128 133
|
fourierdlem99 |
|- ( ( ph /\ i e. ( 0 ..^ N ) ) -> if ( ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) = ( Q ` ( ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) + 1 ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ U ) ` ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
243 |
|
eqeq1 |
|- ( g = s -> ( g = 0 <-> s = 0 ) ) |
244 |
|
oveq2 |
|- ( g = s -> ( X + g ) = ( X + s ) ) |
245 |
244
|
fveq2d |
|- ( g = s -> ( F ` ( X + g ) ) = ( F ` ( X + s ) ) ) |
246 |
|
breq2 |
|- ( g = s -> ( 0 < g <-> 0 < s ) ) |
247 |
246
|
ifbid |
|- ( g = s -> if ( 0 < g , R , L ) = if ( 0 < s , R , L ) ) |
248 |
245 247
|
oveq12d |
|- ( g = s -> ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) = ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) ) |
249 |
|
id |
|- ( g = s -> g = s ) |
250 |
248 249
|
oveq12d |
|- ( g = s -> ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) |
251 |
243 250
|
ifbieq2d |
|- ( g = s -> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) ) |
252 |
251
|
cbvmptv |
|- ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , R , L ) ) / s ) ) ) |
253 |
|
eqeq1 |
|- ( o = s -> ( o = 0 <-> s = 0 ) ) |
254 |
|
id |
|- ( o = s -> o = s ) |
255 |
|
oveq1 |
|- ( o = s -> ( o / 2 ) = ( s / 2 ) ) |
256 |
255
|
fveq2d |
|- ( o = s -> ( sin ` ( o / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
257 |
256
|
oveq2d |
|- ( o = s -> ( 2 x. ( sin ` ( o / 2 ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
258 |
254 257
|
oveq12d |
|- ( o = s -> ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
259 |
253 258
|
ifbieq2d |
|- ( o = s -> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
260 |
259
|
cbvmptv |
|- ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
261 |
|
fveq2 |
|- ( r = s -> ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) = ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) ) |
262 |
|
fveq2 |
|- ( r = s -> ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) = ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) |
263 |
261 262
|
oveq12d |
|- ( r = s -> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) = ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) ) |
264 |
263
|
cbvmptv |
|- ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` s ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` s ) ) ) |
265 |
|
oveq2 |
|- ( d = s -> ( ( k + ( 1 / 2 ) ) x. d ) = ( ( k + ( 1 / 2 ) ) x. s ) ) |
266 |
265
|
fveq2d |
|- ( d = s -> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) |
267 |
266
|
cbvmptv |
|- ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) |
268 |
|
fveq2 |
|- ( z = s -> ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) ) |
269 |
|
fveq2 |
|- ( z = s -> ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) = ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) |
270 |
268 269
|
oveq12d |
|- ( z = s -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) ) |
271 |
270
|
cbvmptv |
|- ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` s ) ) ) |
272 |
|
fveq2 |
|- ( m = n -> ( D ` m ) = ( D ` n ) ) |
273 |
272
|
fveq1d |
|- ( m = n -> ( ( D ` m ) ` s ) = ( ( D ` n ) ` s ) ) |
274 |
273
|
oveq2d |
|- ( m = n -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
275 |
274
|
adantr |
|- ( ( m = n /\ s e. ( -u _pi (,) 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
276 |
275
|
itgeq2dv |
|- ( m = n -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
277 |
276
|
cbvmptv |
|- ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( n e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
278 |
|
oveq1 |
|- ( c = k -> ( c + ( 1 / 2 ) ) = ( k + ( 1 / 2 ) ) ) |
279 |
278
|
oveq1d |
|- ( c = k -> ( ( c + ( 1 / 2 ) ) x. d ) = ( ( k + ( 1 / 2 ) ) x. d ) ) |
280 |
279
|
fveq2d |
|- ( c = k -> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) |
281 |
280
|
mpteq2dv |
|- ( c = k -> ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) = ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ) |
282 |
281
|
fveq1d |
|- ( c = k -> ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) = ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) |
283 |
282
|
oveq2d |
|- ( c = k -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) |
284 |
283
|
mpteq2dv |
|- ( c = k -> ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) = ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ) |
285 |
284
|
fveq1d |
|- ( c = k -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) |
286 |
285
|
adantr |
|- ( ( c = k /\ s e. ( -u _pi (,) 0 ) ) -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) |
287 |
286
|
itgeq2dv |
|- ( c = k -> S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s = S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s ) |
288 |
287
|
oveq1d |
|- ( c = k -> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) = ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) |
289 |
288
|
cbvmptv |
|- ( c e. NN |-> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) = ( k e. NN |-> ( S. ( -u _pi (,) 0 ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) |
290 |
|
oveq1 |
|- ( y = s -> ( y mod ( 2 x. _pi ) ) = ( s mod ( 2 x. _pi ) ) ) |
291 |
290
|
eqeq1d |
|- ( y = s -> ( ( y mod ( 2 x. _pi ) ) = 0 <-> ( s mod ( 2 x. _pi ) ) = 0 ) ) |
292 |
|
oveq2 |
|- ( y = s -> ( ( m + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. s ) ) |
293 |
292
|
fveq2d |
|- ( y = s -> ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) ) |
294 |
|
oveq1 |
|- ( y = s -> ( y / 2 ) = ( s / 2 ) ) |
295 |
294
|
fveq2d |
|- ( y = s -> ( sin ` ( y / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
296 |
295
|
oveq2d |
|- ( y = s -> ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) |
297 |
293 296
|
oveq12d |
|- ( y = s -> ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
298 |
291 297
|
ifbieq2d |
|- ( y = s -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
299 |
298
|
cbvmptv |
|- ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
300 |
|
simpl |
|- ( ( m = k /\ s e. RR ) -> m = k ) |
301 |
300
|
oveq2d |
|- ( ( m = k /\ s e. RR ) -> ( 2 x. m ) = ( 2 x. k ) ) |
302 |
301
|
oveq1d |
|- ( ( m = k /\ s e. RR ) -> ( ( 2 x. m ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
303 |
302
|
oveq1d |
|- ( ( m = k /\ s e. RR ) -> ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) ) |
304 |
300
|
oveq1d |
|- ( ( m = k /\ s e. RR ) -> ( m + ( 1 / 2 ) ) = ( k + ( 1 / 2 ) ) ) |
305 |
304
|
oveq1d |
|- ( ( m = k /\ s e. RR ) -> ( ( m + ( 1 / 2 ) ) x. s ) = ( ( k + ( 1 / 2 ) ) x. s ) ) |
306 |
305
|
fveq2d |
|- ( ( m = k /\ s e. RR ) -> ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) ) |
307 |
306
|
oveq1d |
|- ( ( m = k /\ s e. RR ) -> ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) = ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
308 |
303 307
|
ifeq12d |
|- ( ( m = k /\ s e. RR ) -> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
309 |
308
|
mpteq2dva |
|- ( m = k -> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
310 |
299 309
|
eqtrid |
|- ( m = k -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
311 |
310
|
cbvmptv |
|- ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) = ( k e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
312 |
2 311
|
eqtri |
|- D = ( k e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
313 |
|
eqid |
|- ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( -u _pi [,] l ) ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( -u _pi [,] l ) ) |
314 |
|
eqid |
|- ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) = ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) |
315 |
|
eqid |
|- ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) = ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) |
316 |
|
isoeq1 |
|- ( u = w -> ( u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) <-> w Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ) |
317 |
316
|
cbviotavw |
|- ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) = ( iota w w Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) |
318 |
|
fveq2 |
|- ( j = i -> ( V ` j ) = ( V ` i ) ) |
319 |
318
|
oveq1d |
|- ( j = i -> ( ( V ` j ) - X ) = ( ( V ` i ) - X ) ) |
320 |
319
|
cbvmptv |
|- ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) = ( i e. ( 0 ... N ) |-> ( ( V ` i ) - X ) ) |
321 |
|
eqid |
|- ( iota_ m e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` m ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( m + 1 ) ) ) ) = ( iota_ m e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) - 1 ) ) , ( { -u _pi , l } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( -u _pi (,) l ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` m ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( m + 1 ) ) ) ) |
322 |
|
fveq2 |
|- ( a = s -> ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) ) |
323 |
|
oveq2 |
|- ( a = s -> ( ( b + ( 1 / 2 ) ) x. a ) = ( ( b + ( 1 / 2 ) ) x. s ) ) |
324 |
323
|
fveq2d |
|- ( a = s -> ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) = ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) |
325 |
322 324
|
oveq12d |
|- ( a = s -> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) = ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) ) |
326 |
325
|
cbvitgv |
|- S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s |
327 |
326
|
fveq2i |
|- ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) |
328 |
327
|
breq1i |
|- ( ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) <-> ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) |
329 |
328
|
anbi2i |
|- ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) <-> ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) ) |
330 |
325
|
cbvitgv |
|- S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s |
331 |
330
|
fveq2i |
|- ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) |
332 |
331
|
breq1i |
|- ( ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) <-> ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) |
333 |
329 332
|
anbi12i |
|- ( ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) /\ ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( i / 2 ) ) <-> ( ( ( ( ( ph /\ i e. RR+ ) /\ l e. ( -u _pi (,) 0 ) ) /\ b e. NN ) /\ ( abs ` S. ( l (,) 0 ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) /\ ( abs ` S. ( -u _pi (,) l ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( i / 2 ) ) ) |
334 |
1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 277 289 19 18 16 17 312 313 314 315 317 320 321 333
|
fourierdlem103 |
|- ( ph -> ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ~~> ( L / 2 ) ) |
335 |
|
nnex |
|- NN e. _V |
336 |
335
|
mptex |
|- ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) e. _V |
337 |
22 336
|
eqeltri |
|- Z e. _V |
338 |
337
|
a1i |
|- ( ph -> Z e. _V ) |
339 |
274
|
adantr |
|- ( ( m = n /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) = ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
340 |
339
|
itgeq2dv |
|- ( m = n -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
341 |
340
|
cbvmptv |
|- ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( n e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
342 |
285
|
adantr |
|- ( ( c = k /\ s e. ( 0 (,) _pi ) ) -> ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) = ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) ) |
343 |
342
|
itgeq2dv |
|- ( c = k -> S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s = S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s ) |
344 |
343
|
oveq1d |
|- ( c = k -> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) = ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) |
345 |
344
|
cbvmptv |
|- ( c e. NN |-> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( c + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) = ( k e. NN |-> ( S. ( 0 (,) _pi ) ( ( z e. ( -u _pi [,] _pi ) |-> ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` z ) x. ( ( d e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( k + ( 1 / 2 ) ) x. d ) ) ) ` z ) ) ) ` s ) _d s / _pi ) ) |
346 |
|
eqid |
|- ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( e [,] _pi ) ) = ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) |` ( e [,] _pi ) ) |
347 |
|
eqid |
|- ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) = ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) |
348 |
|
eqid |
|- ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) = ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) |
349 |
|
isoeq1 |
|- ( u = v -> ( u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) <-> v Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ) |
350 |
349
|
cbviotavw |
|- ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) = ( iota v v Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) |
351 |
|
eqid |
|- ( iota_ a e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` a ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( a + 1 ) ) ) ) = ( iota_ a e. ( 0 ..^ N ) ( ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` b ) (,) ( ( iota u u Isom < , < ( ( 0 ... ( ( # ` ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) - 1 ) ) , ( { e , _pi } u. ( ran ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) i^i ( e (,) _pi ) ) ) ) ) ` ( b + 1 ) ) ) C_ ( ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` a ) (,) ( ( j e. ( 0 ... N ) |-> ( ( V ` j ) - X ) ) ` ( a + 1 ) ) ) ) |
352 |
325
|
cbvitgv |
|- S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s |
353 |
352
|
fveq2i |
|- ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) |
354 |
353
|
breq1i |
|- ( ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) <-> ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) |
355 |
354
|
anbi2i |
|- ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) <-> ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) ) |
356 |
325
|
cbvitgv |
|- S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a = S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s |
357 |
356
|
fveq2i |
|- ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) = ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) |
358 |
357
|
breq1i |
|- ( ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) <-> ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) |
359 |
355 358
|
anbi12i |
|- ( ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) /\ ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` a ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. a ) ) ) _d a ) < ( q / 2 ) ) <-> ( ( ( ( ( ph /\ q e. RR+ ) /\ e e. ( 0 (,) _pi ) ) /\ b e. NN ) /\ ( abs ` S. ( 0 (,) e ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) /\ ( abs ` S. ( e (,) _pi ) ( ( ( r e. ( -u _pi [,] _pi ) |-> ( ( ( g e. ( -u _pi [,] _pi ) |-> if ( g = 0 , 0 , ( ( ( F ` ( X + g ) ) - if ( 0 < g , R , L ) ) / g ) ) ) ` r ) x. ( ( o e. ( -u _pi [,] _pi ) |-> if ( o = 0 , 1 , ( o / ( 2 x. ( sin ` ( o / 2 ) ) ) ) ) ) ` r ) ) ) ` s ) x. ( sin ` ( ( b + ( 1 / 2 ) ) x. s ) ) ) _d s ) < ( q / 2 ) ) ) |
360 |
1 26 66 91 92 9 134 143 191 221 232 242 252 260 264 267 271 341 345 19 18 16 17 312 346 347 348 350 320 351 359
|
fourierdlem104 |
|- ( ph -> ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ~~> ( R / 2 ) ) |
361 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) |
362 |
276
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ m = n ) -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
363 |
|
simpr |
|- ( ( ph /\ n e. NN ) -> n e. NN ) |
364 |
|
elioore |
|- ( s e. ( -u _pi (,) 0 ) -> s e. RR ) |
365 |
1
|
adantr |
|- ( ( ph /\ s e. RR ) -> F : RR --> RR ) |
366 |
26
|
adantr |
|- ( ( ph /\ s e. RR ) -> X e. RR ) |
367 |
|
simpr |
|- ( ( ph /\ s e. RR ) -> s e. RR ) |
368 |
366 367
|
readdcld |
|- ( ( ph /\ s e. RR ) -> ( X + s ) e. RR ) |
369 |
365 368
|
ffvelrnd |
|- ( ( ph /\ s e. RR ) -> ( F ` ( X + s ) ) e. RR ) |
370 |
369
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( F ` ( X + s ) ) e. RR ) |
371 |
2
|
dirkerre |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) |
372 |
371
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) |
373 |
370 372
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. RR ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
374 |
364 373
|
sylan2 |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi (,) 0 ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
375 |
|
ioossicc |
|- ( -u _pi (,) 0 ) C_ ( -u _pi [,] 0 ) |
376 |
78
|
leidi |
|- -u _pi <_ -u _pi |
377 |
79 71 77
|
ltleii |
|- 0 <_ _pi |
378 |
|
iccss |
|- ( ( ( -u _pi e. RR /\ _pi e. RR ) /\ ( -u _pi <_ -u _pi /\ 0 <_ _pi ) ) -> ( -u _pi [,] 0 ) C_ ( -u _pi [,] _pi ) ) |
379 |
78 71 376 377 378
|
mp4an |
|- ( -u _pi [,] 0 ) C_ ( -u _pi [,] _pi ) |
380 |
375 379
|
sstri |
|- ( -u _pi (,) 0 ) C_ ( -u _pi [,] _pi ) |
381 |
380
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) C_ ( -u _pi [,] _pi ) ) |
382 |
|
ioombl |
|- ( -u _pi (,) 0 ) e. dom vol |
383 |
382
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( -u _pi (,) 0 ) e. dom vol ) |
384 |
1
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) |
385 |
26
|
adantr |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> X e. RR ) |
386 |
73 72
|
iccssred |
|- ( ph -> ( -u _pi [,] _pi ) C_ RR ) |
387 |
386
|
sselda |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> s e. RR ) |
388 |
385 387
|
readdcld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( X + s ) e. RR ) |
389 |
384 388
|
ffvelrnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( F ` ( X + s ) ) e. RR ) |
390 |
389
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( F ` ( X + s ) ) e. RR ) |
391 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
392 |
78 71 391
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
393 |
392
|
sseli |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
394 |
393 371
|
sylan2 |
|- ( ( n e. NN /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
395 |
394
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
396 |
390 395
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( -u _pi [,] _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
397 |
78
|
a1i |
|- ( ( ph /\ n e. NN ) -> -u _pi e. RR ) |
398 |
71
|
a1i |
|- ( ( ph /\ n e. NN ) -> _pi e. RR ) |
399 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> RR ) |
400 |
26
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. RR ) |
401 |
91
|
adantr |
|- ( ( ph /\ n e. NN ) -> N e. NN ) |
402 |
92
|
adantr |
|- ( ( ph /\ n e. NN ) -> V e. ( ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` n ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ` N ) ) |
403 |
134
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
404 |
232
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> if ( ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) = ( Q ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ C ) ` ( ( y e. RR |-> sup ( { f e. ( 0 ..^ M ) | ( Q ` f ) <_ ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( d e. ( -u _pi (,] _pi ) |-> if ( d = _pi , -u _pi , d ) ) ` ( ( c e. RR |-> ( c + ( ( |_ ` ( ( _pi - c ) / T ) ) x. T ) ) ) ` ( V ` i ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
405 |
242
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ i e. ( 0 ..^ N ) ) -> if ( ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) = ( Q ` ( ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) + 1 ) ) , ( ( j e. ( 0 ..^ M ) |-> [_ j / i ]_ U ) ` ( ( y e. RR |-> sup ( { h e. ( 0 ..^ M ) | ( Q ` h ) <_ ( ( g e. ( -u _pi (,] _pi ) |-> if ( g = _pi , -u _pi , g ) ) ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` y ) ) } , RR , < ) ) ` ( V ` i ) ) ) , ( F ` ( ( e e. RR |-> ( e + ( ( |_ ` ( ( _pi - e ) / T ) ) x. T ) ) ) ` ( V ` ( i + 1 ) ) ) ) ) e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
406 |
2
|
dirkercncf |
|- ( n e. NN -> ( D ` n ) e. ( RR -cn-> RR ) ) |
407 |
406
|
adantl |
|- ( ( ph /\ n e. NN ) -> ( D ` n ) e. ( RR -cn-> RR ) ) |
408 |
|
eqid |
|- ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) |
409 |
397 398 399 400 66 401 402 403 404 405 320 3 407 408
|
fourierdlem84 |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi [,] _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
410 |
381 383 396 409
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. ( -u _pi (,) 0 ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
411 |
374 410
|
itgcl |
|- ( ( ph /\ n e. NN ) -> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) |
412 |
361 362 363 411
|
fvmptd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) = S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
413 |
412 411
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) e. CC ) |
414 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) |
415 |
340
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ m = n ) -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
416 |
1
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) _pi ) ) -> F : RR --> RR ) |
417 |
26
|
adantr |
|- ( ( ph /\ s e. ( 0 (,) _pi ) ) -> X e. RR ) |
418 |
|
elioore |
|- ( s e. ( 0 (,) _pi ) -> s e. RR ) |
419 |
418
|
adantl |
|- ( ( ph /\ s e. ( 0 (,) _pi ) ) -> s e. RR ) |
420 |
417 419
|
readdcld |
|- ( ( ph /\ s e. ( 0 (,) _pi ) ) -> ( X + s ) e. RR ) |
421 |
416 420
|
ffvelrnd |
|- ( ( ph /\ s e. ( 0 (,) _pi ) ) -> ( F ` ( X + s ) ) e. RR ) |
422 |
421
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( F ` ( X + s ) ) e. RR ) |
423 |
418 371
|
sylan2 |
|- ( ( n e. NN /\ s e. ( 0 (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
424 |
423
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( D ` n ) ` s ) e. RR ) |
425 |
422 424
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. ( 0 (,) _pi ) ) -> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) e. RR ) |
426 |
|
ioossicc |
|- ( 0 (,) _pi ) C_ ( 0 [,] _pi ) |
427 |
78 79 76
|
ltleii |
|- -u _pi <_ 0 |
428 |
71
|
leidi |
|- _pi <_ _pi |
429 |
|
iccss |
|- ( ( ( -u _pi e. RR /\ _pi e. RR ) /\ ( -u _pi <_ 0 /\ _pi <_ _pi ) ) -> ( 0 [,] _pi ) C_ ( -u _pi [,] _pi ) ) |
430 |
78 71 427 428 429
|
mp4an |
|- ( 0 [,] _pi ) C_ ( -u _pi [,] _pi ) |
431 |
426 430
|
sstri |
|- ( 0 (,) _pi ) C_ ( -u _pi [,] _pi ) |
432 |
431
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) C_ ( -u _pi [,] _pi ) ) |
433 |
|
ioombl |
|- ( 0 (,) _pi ) e. dom vol |
434 |
433
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 0 (,) _pi ) e. dom vol ) |
435 |
432 434 396 409
|
iblss |
|- ( ( ph /\ n e. NN ) -> ( s e. ( 0 (,) _pi ) |-> ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) ) e. L^1 ) |
436 |
425 435
|
itgcl |
|- ( ( ph /\ n e. NN ) -> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s e. CC ) |
437 |
414 415 363 436
|
fvmptd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) = S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) |
438 |
437 436
|
eqeltrd |
|- ( ( ph /\ n e. NN ) -> ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) e. CC ) |
439 |
|
eleq1w |
|- ( m = n -> ( m e. NN <-> n e. NN ) ) |
440 |
439
|
anbi2d |
|- ( m = n -> ( ( ph /\ m e. NN ) <-> ( ph /\ n e. NN ) ) ) |
441 |
|
fveq2 |
|- ( m = n -> ( Z ` m ) = ( Z ` n ) ) |
442 |
276 340
|
oveq12d |
|- ( m = n -> ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
443 |
441 442
|
eqeq12d |
|- ( m = n -> ( ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) <-> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) ) |
444 |
440 443
|
imbi12d |
|- ( m = n -> ( ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) <-> ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) ) ) |
445 |
|
oveq1 |
|- ( n = m -> ( n x. x ) = ( m x. x ) ) |
446 |
445
|
fveq2d |
|- ( n = m -> ( cos ` ( n x. x ) ) = ( cos ` ( m x. x ) ) ) |
447 |
446
|
oveq2d |
|- ( n = m -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) ) |
448 |
447
|
adantr |
|- ( ( n = m /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) ) |
449 |
448
|
itgeq2dv |
|- ( n = m -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x ) |
450 |
449
|
oveq1d |
|- ( n = m -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) |
451 |
450
|
cbvmptv |
|- ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) = ( m e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) |
452 |
20 451
|
eqtri |
|- A = ( m e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( m x. x ) ) ) _d x / _pi ) ) |
453 |
445
|
fveq2d |
|- ( n = m -> ( sin ` ( n x. x ) ) = ( sin ` ( m x. x ) ) ) |
454 |
453
|
oveq2d |
|- ( n = m -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) ) |
455 |
454
|
adantr |
|- ( ( n = m /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) ) |
456 |
455
|
itgeq2dv |
|- ( n = m -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x ) |
457 |
456
|
oveq1d |
|- ( n = m -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) |
458 |
457
|
cbvmptv |
|- ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) = ( m e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) |
459 |
21 458
|
eqtri |
|- B = ( m e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( m x. x ) ) ) _d x / _pi ) ) |
460 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
461 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
462 |
461
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) |
463 |
460 462
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
464 |
|
fveq2 |
|- ( n = k -> ( B ` n ) = ( B ` k ) ) |
465 |
461
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
466 |
464 465
|
oveq12d |
|- ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
467 |
463 466
|
oveq12d |
|- ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
468 |
467
|
cbvsumv |
|- sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
469 |
468
|
oveq2i |
|- ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
470 |
469
|
mpteq2i |
|- ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) |
471 |
|
oveq2 |
|- ( m = n -> ( 1 ... m ) = ( 1 ... n ) ) |
472 |
471
|
sumeq1d |
|- ( m = n -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
473 |
472
|
oveq2d |
|- ( m = n -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) |
474 |
473
|
cbvmptv |
|- ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) |
475 |
|
fveq2 |
|- ( k = m -> ( A ` k ) = ( A ` m ) ) |
476 |
|
oveq1 |
|- ( k = m -> ( k x. X ) = ( m x. X ) ) |
477 |
476
|
fveq2d |
|- ( k = m -> ( cos ` ( k x. X ) ) = ( cos ` ( m x. X ) ) ) |
478 |
475 477
|
oveq12d |
|- ( k = m -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) = ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) ) |
479 |
|
fveq2 |
|- ( k = m -> ( B ` k ) = ( B ` m ) ) |
480 |
476
|
fveq2d |
|- ( k = m -> ( sin ` ( k x. X ) ) = ( sin ` ( m x. X ) ) ) |
481 |
479 480
|
oveq12d |
|- ( k = m -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) = ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) |
482 |
478 481
|
oveq12d |
|- ( k = m -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) |
483 |
482
|
cbvsumv |
|- sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) |
484 |
483
|
oveq2i |
|- ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) |
485 |
484
|
mpteq2i |
|- ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) |
486 |
474 485
|
eqtri |
|- ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) |
487 |
22 470 486
|
3eqtri |
|- Z = ( n e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ m e. ( 1 ... n ) ( ( ( A ` m ) x. ( cos ` ( m x. X ) ) ) + ( ( B ` m ) x. ( sin ` ( m x. X ) ) ) ) ) ) |
488 |
|
oveq2 |
|- ( y = x -> ( X + y ) = ( X + x ) ) |
489 |
488
|
fveq2d |
|- ( y = x -> ( F ` ( X + y ) ) = ( F ` ( X + x ) ) ) |
490 |
|
fveq2 |
|- ( y = x -> ( ( D ` m ) ` y ) = ( ( D ` m ) ` x ) ) |
491 |
489 490
|
oveq12d |
|- ( y = x -> ( ( F ` ( X + y ) ) x. ( ( D ` m ) ` y ) ) = ( ( F ` ( X + x ) ) x. ( ( D ` m ) ` x ) ) ) |
492 |
491
|
cbvmptv |
|- ( y e. RR |-> ( ( F ` ( X + y ) ) x. ( ( D ` m ) ` y ) ) ) = ( x e. RR |-> ( ( F ` ( X + x ) ) x. ( ( D ` m ) ` x ) ) ) |
493 |
|
eqid |
|- ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` n ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = ( -u _pi - X ) /\ ( p ` n ) = ( _pi - X ) ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
494 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
495 |
494
|
oveq1d |
|- ( j = i -> ( ( Q ` j ) - X ) = ( ( Q ` i ) - X ) ) |
496 |
495
|
cbvmptv |
|- ( j e. ( 0 ... M ) |-> ( ( Q ` j ) - X ) ) = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) - X ) ) |
497 |
452 459 487 2 3 4 5 8 1 11 492 12 13 14 10 493 496
|
fourierdlem111 |
|- ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ) |
498 |
444 497
|
chvarvv |
|- ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
499 |
412 437
|
oveq12d |
|- ( ( ph /\ n e. NN ) -> ( ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) + ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) ) = ( S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s + S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` n ) ` s ) ) _d s ) ) |
500 |
498 499
|
eqtr4d |
|- ( ( ph /\ n e. NN ) -> ( Z ` n ) = ( ( ( m e. NN |-> S. ( -u _pi (,) 0 ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) + ( ( m e. NN |-> S. ( 0 (,) _pi ) ( ( F ` ( X + s ) ) x. ( ( D ` m ) ` s ) ) _d s ) ` n ) ) ) |
501 |
41 49 52 65 39 40 334 338 360 413 438 500
|
climaddf |
|- ( ph -> Z ~~> ( ( L / 2 ) + ( R / 2 ) ) ) |
502 |
|
limccl |
|- ( ( F |` ( -oo (,) X ) ) limCC X ) C_ CC |
503 |
502 18
|
sselid |
|- ( ph -> L e. CC ) |
504 |
|
limccl |
|- ( ( F |` ( X (,) +oo ) ) limCC X ) C_ CC |
505 |
504 19
|
sselid |
|- ( ph -> R e. CC ) |
506 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
507 |
|
2pos |
|- 0 < 2 |
508 |
507
|
a1i |
|- ( ph -> 0 < 2 ) |
509 |
508
|
gt0ne0d |
|- ( ph -> 2 =/= 0 ) |
510 |
503 505 506 509
|
divdird |
|- ( ph -> ( ( L + R ) / 2 ) = ( ( L / 2 ) + ( R / 2 ) ) ) |
511 |
501 510
|
breqtrrd |
|- ( ph -> Z ~~> ( ( L + R ) / 2 ) ) |
512 |
|
0nn0 |
|- 0 e. NN0 |
513 |
1
|
adantr |
|- ( ( ph /\ 0 e. NN0 ) -> F : RR --> RR ) |
514 |
|
eqid |
|- ( -u _pi (,) _pi ) = ( -u _pi (,) _pi ) |
515 |
|
ioossre |
|- ( -u _pi (,) _pi ) C_ RR |
516 |
515
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) C_ RR ) |
517 |
1 516
|
feqresmpt |
|- ( ph -> ( F |` ( -u _pi (,) _pi ) ) = ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) ) |
518 |
|
ioossicc |
|- ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) |
519 |
518
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) ) |
520 |
|
ioombl |
|- ( -u _pi (,) _pi ) e. dom vol |
521 |
520
|
a1i |
|- ( ph -> ( -u _pi (,) _pi ) e. dom vol ) |
522 |
1
|
adantr |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> F : RR --> RR ) |
523 |
386
|
sselda |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> x e. RR ) |
524 |
522 523
|
ffvelrnd |
|- ( ( ph /\ x e. ( -u _pi [,] _pi ) ) -> ( F ` x ) e. RR ) |
525 |
1 386
|
feqresmpt |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) = ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) ) |
526 |
187
|
a1i |
|- ( ph -> RR C_ CC ) |
527 |
1 526
|
fssd |
|- ( ph -> F : RR --> CC ) |
528 |
527 386
|
fssresd |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) : ( -u _pi [,] _pi ) --> CC ) |
529 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
530 |
78
|
rexri |
|- -u _pi e. RR* |
531 |
530
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
532 |
71
|
rexri |
|- _pi e. RR* |
533 |
532
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
534 |
3 4 5
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
535 |
534
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
536 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
537 |
531 533 535 536
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
538 |
529 537
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
539 |
538
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
540 |
539 12
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
541 |
539
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
542 |
541
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
543 |
13 542
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> C e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
544 |
541
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
545 |
14 544
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> U e. ( ( ( F |` ( -u _pi [,] _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
546 |
3 4 5 528 540 543 545
|
fourierdlem69 |
|- ( ph -> ( F |` ( -u _pi [,] _pi ) ) e. L^1 ) |
547 |
525 546
|
eqeltrrd |
|- ( ph -> ( x e. ( -u _pi [,] _pi ) |-> ( F ` x ) ) e. L^1 ) |
548 |
519 521 524 547
|
iblss |
|- ( ph -> ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) |
549 |
517 548
|
eqeltrd |
|- ( ph -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
550 |
549
|
adantr |
|- ( ( ph /\ 0 e. NN0 ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
551 |
|
simpr |
|- ( ( ph /\ 0 e. NN0 ) -> 0 e. NN0 ) |
552 |
513 514 550 20 551
|
fourierdlem16 |
|- ( ( ph /\ 0 e. NN0 ) -> ( ( ( A ` 0 ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( 0 x. x ) ) ) _d x e. RR ) ) |
553 |
552
|
simplld |
|- ( ( ph /\ 0 e. NN0 ) -> ( A ` 0 ) e. RR ) |
554 |
512 553
|
mpan2 |
|- ( ph -> ( A ` 0 ) e. RR ) |
555 |
554
|
rehalfcld |
|- ( ph -> ( ( A ` 0 ) / 2 ) e. RR ) |
556 |
555
|
recnd |
|- ( ph -> ( ( A ` 0 ) / 2 ) e. CC ) |
557 |
335
|
mptex |
|- ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) e. _V |
558 |
557
|
a1i |
|- ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) e. _V ) |
559 |
|
simpr |
|- ( ( ph /\ m e. NN ) -> m e. NN ) |
560 |
555
|
adantr |
|- ( ( ph /\ m e. NN ) -> ( ( A ` 0 ) / 2 ) e. RR ) |
561 |
|
fzfid |
|- ( ( ph /\ m e. NN ) -> ( 1 ... m ) e. Fin ) |
562 |
|
simpll |
|- ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> ph ) |
563 |
|
elfznn |
|- ( n e. ( 1 ... m ) -> n e. NN ) |
564 |
563
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> n e. NN ) |
565 |
|
simpl |
|- ( ( ph /\ n e. NN ) -> ph ) |
566 |
363
|
nnnn0d |
|- ( ( ph /\ n e. NN ) -> n e. NN0 ) |
567 |
|
eleq1w |
|- ( k = n -> ( k e. NN0 <-> n e. NN0 ) ) |
568 |
567
|
anbi2d |
|- ( k = n -> ( ( ph /\ k e. NN0 ) <-> ( ph /\ n e. NN0 ) ) ) |
569 |
|
fveq2 |
|- ( k = n -> ( A ` k ) = ( A ` n ) ) |
570 |
569
|
eleq1d |
|- ( k = n -> ( ( A ` k ) e. RR <-> ( A ` n ) e. RR ) ) |
571 |
568 570
|
imbi12d |
|- ( k = n -> ( ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. RR ) <-> ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. RR ) ) ) |
572 |
1
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> F : RR --> RR ) |
573 |
549
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
574 |
|
simpr |
|- ( ( ph /\ k e. NN0 ) -> k e. NN0 ) |
575 |
572 514 573 20 574
|
fourierdlem16 |
|- ( ( ph /\ k e. NN0 ) -> ( ( ( A ` k ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( F ` x ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x e. RR ) ) |
576 |
575
|
simplld |
|- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. RR ) |
577 |
571 576
|
chvarvv |
|- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. RR ) |
578 |
565 566 577
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( A ` n ) e. RR ) |
579 |
363
|
nnred |
|- ( ( ph /\ n e. NN ) -> n e. RR ) |
580 |
579 400
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( n x. X ) e. RR ) |
581 |
580
|
recoscld |
|- ( ( ph /\ n e. NN ) -> ( cos ` ( n x. X ) ) e. RR ) |
582 |
578 581
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) e. RR ) |
583 |
|
eleq1w |
|- ( k = n -> ( k e. NN <-> n e. NN ) ) |
584 |
583
|
anbi2d |
|- ( k = n -> ( ( ph /\ k e. NN ) <-> ( ph /\ n e. NN ) ) ) |
585 |
|
fveq2 |
|- ( k = n -> ( B ` k ) = ( B ` n ) ) |
586 |
585
|
eleq1d |
|- ( k = n -> ( ( B ` k ) e. RR <-> ( B ` n ) e. RR ) ) |
587 |
584 586
|
imbi12d |
|- ( k = n -> ( ( ( ph /\ k e. NN ) -> ( B ` k ) e. RR ) <-> ( ( ph /\ n e. NN ) -> ( B ` n ) e. RR ) ) ) |
588 |
1
|
adantr |
|- ( ( ph /\ k e. NN ) -> F : RR --> RR ) |
589 |
549
|
adantr |
|- ( ( ph /\ k e. NN ) -> ( F |` ( -u _pi (,) _pi ) ) e. L^1 ) |
590 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
591 |
588 514 589 21 590
|
fourierdlem21 |
|- ( ( ph /\ k e. NN ) -> ( ( ( B ` k ) e. RR /\ ( x e. ( -u _pi (,) _pi ) |-> ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) ) e. L^1 ) /\ S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x e. RR ) ) |
592 |
591
|
simplld |
|- ( ( ph /\ k e. NN ) -> ( B ` k ) e. RR ) |
593 |
587 592
|
chvarvv |
|- ( ( ph /\ n e. NN ) -> ( B ` n ) e. RR ) |
594 |
580
|
resincld |
|- ( ( ph /\ n e. NN ) -> ( sin ` ( n x. X ) ) e. RR ) |
595 |
593 594
|
remulcld |
|- ( ( ph /\ n e. NN ) -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) e. RR ) |
596 |
582 595
|
readdcld |
|- ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) |
597 |
562 564 596
|
syl2anc |
|- ( ( ( ph /\ m e. NN ) /\ n e. ( 1 ... m ) ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) |
598 |
561 597
|
fsumrecl |
|- ( ( ph /\ m e. NN ) -> sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. RR ) |
599 |
560 598
|
readdcld |
|- ( ( ph /\ m e. NN ) -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. RR ) |
600 |
22
|
fvmpt2 |
|- ( ( m e. NN /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. RR ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
601 |
559 599 600
|
syl2anc |
|- ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
602 |
601 599
|
eqeltrd |
|- ( ( ph /\ m e. NN ) -> ( Z ` m ) e. RR ) |
603 |
602
|
recnd |
|- ( ( ph /\ m e. NN ) -> ( Z ` m ) e. CC ) |
604 |
|
eqidd |
|- ( ( ph /\ m e. NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) |
605 |
|
oveq2 |
|- ( n = m -> ( 1 ... n ) = ( 1 ... m ) ) |
606 |
605
|
sumeq1d |
|- ( n = m -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
607 |
606
|
adantl |
|- ( ( ( ph /\ m e. NN ) /\ n = m ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
608 |
|
sumex |
|- sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. _V |
609 |
608
|
a1i |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. _V ) |
610 |
604 607 559 609
|
fvmptd |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` m ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
611 |
560
|
recnd |
|- ( ( ph /\ m e. NN ) -> ( ( A ` 0 ) / 2 ) e. CC ) |
612 |
598
|
recnd |
|- ( ( ph /\ m e. NN ) -> sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. CC ) |
613 |
611 612
|
pncan2d |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) = sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
614 |
613 468
|
eqtr2di |
|- ( ( ph /\ m e. NN ) -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) ) |
615 |
|
ovex |
|- ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. _V |
616 |
22
|
fvmpt2 |
|- ( ( m e. NN /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) e. _V ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
617 |
559 615 616
|
sylancl |
|- ( ( ph /\ m e. NN ) -> ( Z ` m ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
618 |
617
|
eqcomd |
|- ( ( ph /\ m e. NN ) -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( Z ` m ) ) |
619 |
618
|
oveq1d |
|- ( ( ph /\ m e. NN ) -> ( ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) - ( ( A ` 0 ) / 2 ) ) = ( ( Z ` m ) - ( ( A ` 0 ) / 2 ) ) ) |
620 |
610 614 619
|
3eqtrd |
|- ( ( ph /\ m e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` m ) = ( ( Z ` m ) - ( ( A ` 0 ) / 2 ) ) ) |
621 |
39 40 511 556 558 603 620
|
climsubc1 |
|- ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
622 |
|
seqex |
|- seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) e. _V |
623 |
622
|
a1i |
|- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) e. _V ) |
624 |
|
eqidd |
|- ( ( ph /\ l e. NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) |
625 |
|
oveq2 |
|- ( n = l -> ( 1 ... n ) = ( 1 ... l ) ) |
626 |
625
|
sumeq1d |
|- ( n = l -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
627 |
626
|
adantl |
|- ( ( ( ph /\ l e. NN ) /\ n = l ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
628 |
|
simpr |
|- ( ( ph /\ l e. NN ) -> l e. NN ) |
629 |
|
fzfid |
|- ( ( ph /\ l e. NN ) -> ( 1 ... l ) e. Fin ) |
630 |
|
elfznn |
|- ( k e. ( 1 ... l ) -> k e. NN ) |
631 |
630
|
nnnn0d |
|- ( k e. ( 1 ... l ) -> k e. NN0 ) |
632 |
631 576
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( A ` k ) e. RR ) |
633 |
630
|
nnred |
|- ( k e. ( 1 ... l ) -> k e. RR ) |
634 |
633
|
adantl |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> k e. RR ) |
635 |
8
|
adantr |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> X e. RR ) |
636 |
634 635
|
remulcld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( k x. X ) e. RR ) |
637 |
636
|
recoscld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( cos ` ( k x. X ) ) e. RR ) |
638 |
632 637
|
remulcld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) |
639 |
630 592
|
sylan2 |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( B ` k ) e. RR ) |
640 |
636
|
resincld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( sin ` ( k x. X ) ) e. RR ) |
641 |
639 640
|
remulcld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) e. RR ) |
642 |
638 641
|
readdcld |
|- ( ( ph /\ k e. ( 1 ... l ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) |
643 |
642
|
adantlr |
|- ( ( ( ph /\ l e. NN ) /\ k e. ( 1 ... l ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) |
644 |
629 643
|
fsumrecl |
|- ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) |
645 |
624 627 628 644
|
fvmptd |
|- ( ( ph /\ l e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` l ) = sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
646 |
|
eleq1w |
|- ( n = l -> ( n e. NN <-> l e. NN ) ) |
647 |
646
|
anbi2d |
|- ( n = l -> ( ( ph /\ n e. NN ) <-> ( ph /\ l e. NN ) ) ) |
648 |
|
fveq2 |
|- ( n = l -> ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) |
649 |
626 648
|
eqeq12d |
|- ( n = l -> ( sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) <-> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) ) |
650 |
647 649
|
imbi12d |
|- ( n = l -> ( ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) ) <-> ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) ) ) |
651 |
|
eqidd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) |
652 |
|
fveq2 |
|- ( j = k -> ( A ` j ) = ( A ` k ) ) |
653 |
|
oveq1 |
|- ( j = k -> ( j x. X ) = ( k x. X ) ) |
654 |
653
|
fveq2d |
|- ( j = k -> ( cos ` ( j x. X ) ) = ( cos ` ( k x. X ) ) ) |
655 |
652 654
|
oveq12d |
|- ( j = k -> ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
656 |
|
fveq2 |
|- ( j = k -> ( B ` j ) = ( B ` k ) ) |
657 |
653
|
fveq2d |
|- ( j = k -> ( sin ` ( j x. X ) ) = ( sin ` ( k x. X ) ) ) |
658 |
656 657
|
oveq12d |
|- ( j = k -> ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
659 |
655 658
|
oveq12d |
|- ( j = k -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
660 |
659
|
adantl |
|- ( ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) /\ j = k ) -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
661 |
|
elfznn |
|- ( k e. ( 1 ... n ) -> k e. NN ) |
662 |
661
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
663 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
664 |
|
nnnn0 |
|- ( k e. NN -> k e. NN0 ) |
665 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
666 |
665
|
adantl |
|- ( ( ph /\ k e. NN0 ) -> k e. RR ) |
667 |
8
|
adantr |
|- ( ( ph /\ k e. NN0 ) -> X e. RR ) |
668 |
666 667
|
remulcld |
|- ( ( ph /\ k e. NN0 ) -> ( k x. X ) e. RR ) |
669 |
668
|
recoscld |
|- ( ( ph /\ k e. NN0 ) -> ( cos ` ( k x. X ) ) e. RR ) |
670 |
576 669
|
remulcld |
|- ( ( ph /\ k e. NN0 ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) |
671 |
664 670
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) e. RR ) |
672 |
664 668
|
sylan2 |
|- ( ( ph /\ k e. NN ) -> ( k x. X ) e. RR ) |
673 |
672
|
resincld |
|- ( ( ph /\ k e. NN ) -> ( sin ` ( k x. X ) ) e. RR ) |
674 |
592 673
|
remulcld |
|- ( ( ph /\ k e. NN ) -> ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) e. RR ) |
675 |
671 674
|
readdcld |
|- ( ( ph /\ k e. NN ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) |
676 |
663 662 675
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. RR ) |
677 |
651 660 662 676
|
fvmptd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ` k ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
678 |
363 39
|
eleqtrdi |
|- ( ( ph /\ n e. NN ) -> n e. ( ZZ>= ` 1 ) ) |
679 |
676
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) e. CC ) |
680 |
677 678 679
|
fsumser |
|- ( ( ph /\ n e. NN ) -> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` n ) ) |
681 |
650 680
|
chvarvv |
|- ( ( ph /\ l e. NN ) -> sum_ k e. ( 1 ... l ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) |
682 |
645 681
|
eqtrd |
|- ( ( ph /\ l e. NN ) -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ` l ) = ( seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ` l ) ) |
683 |
39 558 623 40 682
|
climeq |
|- ( ph -> ( ( n e. NN |-> sum_ k e. ( 1 ... n ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) <-> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) ) |
684 |
621 683
|
mpbid |
|- ( ph -> seq 1 ( + , ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
685 |
38 684
|
eqbrtrd |
|- ( ph -> seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
686 |
|
eqidd |
|- ( ( ph /\ n e. NN ) -> ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) = ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ) |
687 |
|
fveq2 |
|- ( j = n -> ( A ` j ) = ( A ` n ) ) |
688 |
|
oveq1 |
|- ( j = n -> ( j x. X ) = ( n x. X ) ) |
689 |
688
|
fveq2d |
|- ( j = n -> ( cos ` ( j x. X ) ) = ( cos ` ( n x. X ) ) ) |
690 |
687 689
|
oveq12d |
|- ( j = n -> ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) = ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) ) |
691 |
|
fveq2 |
|- ( j = n -> ( B ` j ) = ( B ` n ) ) |
692 |
688
|
fveq2d |
|- ( j = n -> ( sin ` ( j x. X ) ) = ( sin ` ( n x. X ) ) ) |
693 |
691 692
|
oveq12d |
|- ( j = n -> ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) = ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) |
694 |
690 693
|
oveq12d |
|- ( j = n -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
695 |
694
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ j = n ) -> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
696 |
686 695 363 596
|
fvmptd |
|- ( ( ph /\ n e. NN ) -> ( ( j e. NN |-> ( ( ( A ` j ) x. ( cos ` ( j x. X ) ) ) + ( ( B ` j ) x. ( sin ` ( j x. X ) ) ) ) ) ` n ) = ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
697 |
596
|
recnd |
|- ( ( ph /\ n e. NN ) -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) e. CC ) |
698 |
39 40 696 697 684
|
isumclim |
|- ( ph -> sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
699 |
698
|
oveq2d |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) ) |
700 |
503 505
|
addcld |
|- ( ph -> ( L + R ) e. CC ) |
701 |
700
|
halfcld |
|- ( ph -> ( ( L + R ) / 2 ) e. CC ) |
702 |
556 701
|
pncan3d |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) = ( ( L + R ) / 2 ) ) |
703 |
699 702
|
eqtrd |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) |
704 |
685 703
|
jca |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |