Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem113.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem113.t |
|- T = ( 2 x. _pi ) |
3 |
|
fourierdlem113.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fourierdlem113.x |
|- ( ph -> X e. RR ) |
5 |
|
fourierdlem113.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
6 |
|
fourierdlem113.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
7 |
|
fourierdlem113.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
8 |
|
fourierdlem113.m |
|- ( ph -> M e. NN ) |
9 |
|
fourierdlem113.q |
|- ( ph -> Q e. ( P ` M ) ) |
10 |
|
fourierdlem113.dvcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
11 |
|
fourierdlem113.dvlb |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
12 |
|
fourierdlem113.dvub |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
13 |
|
fourierdlem113.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
14 |
|
fourierdlem113.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
15 |
|
fourierdlem113.15 |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
16 |
|
fourierdlem113.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
17 |
|
fourierdlem113.exq |
|- ( ph -> ( E ` X ) e. ran Q ) |
18 |
|
oveq1 |
|- ( w = y -> ( w mod ( 2 x. _pi ) ) = ( y mod ( 2 x. _pi ) ) ) |
19 |
18
|
eqeq1d |
|- ( w = y -> ( ( w mod ( 2 x. _pi ) ) = 0 <-> ( y mod ( 2 x. _pi ) ) = 0 ) ) |
20 |
|
oveq2 |
|- ( w = y -> ( ( k + ( 1 / 2 ) ) x. w ) = ( ( k + ( 1 / 2 ) ) x. y ) ) |
21 |
20
|
fveq2d |
|- ( w = y -> ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) = ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) ) |
22 |
|
oveq1 |
|- ( w = y -> ( w / 2 ) = ( y / 2 ) ) |
23 |
22
|
fveq2d |
|- ( w = y -> ( sin ` ( w / 2 ) ) = ( sin ` ( y / 2 ) ) ) |
24 |
23
|
oveq2d |
|- ( w = y -> ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) = ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) |
25 |
21 24
|
oveq12d |
|- ( w = y -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) = ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) |
26 |
19 25
|
ifbieq2d |
|- ( w = y -> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
27 |
26
|
cbvmptv |
|- ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
28 |
|
oveq2 |
|- ( k = m -> ( 2 x. k ) = ( 2 x. m ) ) |
29 |
28
|
oveq1d |
|- ( k = m -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. m ) + 1 ) ) |
30 |
29
|
oveq1d |
|- ( k = m -> ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) = ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) ) |
31 |
|
oveq1 |
|- ( k = m -> ( k + ( 1 / 2 ) ) = ( m + ( 1 / 2 ) ) ) |
32 |
31
|
oveq1d |
|- ( k = m -> ( ( k + ( 1 / 2 ) ) x. y ) = ( ( m + ( 1 / 2 ) ) x. y ) ) |
33 |
32
|
fveq2d |
|- ( k = m -> ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) = ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) ) |
34 |
33
|
oveq1d |
|- ( k = m -> ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) = ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) |
35 |
30 34
|
ifeq12d |
|- ( k = m -> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) = if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) |
36 |
35
|
mpteq2dv |
|- ( k = m -> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
37 |
27 36
|
syl5eq |
|- ( k = m -> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) = ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
38 |
37
|
cbvmptv |
|- ( k e. NN |-> ( w e. RR |-> if ( ( w mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. k ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( k + ( 1 / 2 ) ) x. w ) ) / ( ( 2 x. _pi ) x. ( sin ` ( w / 2 ) ) ) ) ) ) ) = ( m e. NN |-> ( y e. RR |-> if ( ( y mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. m ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( m + ( 1 / 2 ) ) x. y ) ) / ( ( 2 x. _pi ) x. ( sin ` ( y / 2 ) ) ) ) ) ) ) |
39 |
|
oveq1 |
|- ( w = y -> ( w + ( j x. T ) ) = ( y + ( j x. T ) ) ) |
40 |
39
|
eleq1d |
|- ( w = y -> ( ( w + ( j x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) |
41 |
40
|
rexbidv |
|- ( w = y -> ( E. j e. ZZ ( w + ( j x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) |
42 |
41
|
cbvrabv |
|- { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } |
43 |
42
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) |
44 |
43
|
fveq2i |
|- ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) |
45 |
44
|
oveq1i |
|- ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) - 1 ) |
46 |
|
oveq1 |
|- ( k = j -> ( k x. T ) = ( j x. T ) ) |
47 |
46
|
oveq2d |
|- ( k = j -> ( y + ( k x. T ) ) = ( y + ( j x. T ) ) ) |
48 |
47
|
eleq1d |
|- ( k = j -> ( ( y + ( k x. T ) ) e. ran Q <-> ( y + ( j x. T ) ) e. ran Q ) ) |
49 |
48
|
cbvrexvw |
|- ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) |
50 |
49
|
a1i |
|- ( y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( y + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( y + ( j x. T ) ) e. ran Q ) ) |
51 |
50
|
rabbiia |
|- { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } = { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } |
52 |
51
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) |
53 |
|
isoeq5 |
|- ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
54 |
52 53
|
ax-mp |
|- ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
55 |
54
|
a1i |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
56 |
46
|
oveq2d |
|- ( k = j -> ( w + ( k x. T ) ) = ( w + ( j x. T ) ) ) |
57 |
56
|
eleq1d |
|- ( k = j -> ( ( w + ( k x. T ) ) e. ran Q <-> ( w + ( j x. T ) ) e. ran Q ) ) |
58 |
57
|
cbvrexvw |
|- ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) |
59 |
58
|
a1i |
|- ( w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) -> ( E. k e. ZZ ( w + ( k x. T ) ) e. ran Q <-> E. j e. ZZ ( w + ( j x. T ) ) e. ran Q ) ) |
60 |
59
|
rabbiia |
|- { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } |
61 |
60
|
uneq2i |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) |
62 |
61
|
fveq2i |
|- ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) = ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) |
63 |
62
|
oveq1i |
|- ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) = ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) |
64 |
63
|
oveq2i |
|- ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) |
65 |
|
isoeq4 |
|- ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) = ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
66 |
64 65
|
ax-mp |
|- ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
67 |
66
|
a1i |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
68 |
|
isoeq1 |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
69 |
55 67 68
|
3bitrd |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) ) |
70 |
69
|
cbviotavw |
|- ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( w + ( j x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. j e. ZZ ( y + ( j x. T ) ) e. ran Q } ) ) ) |
71 |
|
pire |
|- _pi e. RR |
72 |
71
|
renegcli |
|- -u _pi e. RR |
73 |
72
|
a1i |
|- ( ph -> -u _pi e. RR ) |
74 |
71
|
a1i |
|- ( ph -> _pi e. RR ) |
75 |
|
negpilt0 |
|- -u _pi < 0 |
76 |
75
|
a1i |
|- ( ph -> -u _pi < 0 ) |
77 |
|
pipos |
|- 0 < _pi |
78 |
77
|
a1i |
|- ( ph -> 0 < _pi ) |
79 |
|
picn |
|- _pi e. CC |
80 |
79
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
81 |
79 79
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
82 |
80 2 81
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
83 |
7
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
84 |
8 83
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
85 |
9 84
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
86 |
85
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
87 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
88 |
86 87
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
89 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
90 |
|
rnffi |
|- ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. Fin ) -> ran Q e. Fin ) |
91 |
88 89 90
|
syl2anc |
|- ( ph -> ran Q e. Fin ) |
92 |
7 8 9
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
93 |
|
frn |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> ran Q C_ ( -u _pi [,] _pi ) ) |
94 |
92 93
|
syl |
|- ( ph -> ran Q C_ ( -u _pi [,] _pi ) ) |
95 |
85
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
96 |
95
|
simplrd |
|- ( ph -> ( Q ` M ) = _pi ) |
97 |
|
ffun |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> Fun Q ) |
98 |
92 97
|
syl |
|- ( ph -> Fun Q ) |
99 |
8
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
100 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
101 |
99 100
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
102 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
103 |
101 102
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
104 |
|
fdm |
|- ( Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) -> dom Q = ( 0 ... M ) ) |
105 |
92 104
|
syl |
|- ( ph -> dom Q = ( 0 ... M ) ) |
106 |
105
|
eqcomd |
|- ( ph -> ( 0 ... M ) = dom Q ) |
107 |
103 106
|
eleqtrd |
|- ( ph -> M e. dom Q ) |
108 |
|
fvelrn |
|- ( ( Fun Q /\ M e. dom Q ) -> ( Q ` M ) e. ran Q ) |
109 |
98 107 108
|
syl2anc |
|- ( ph -> ( Q ` M ) e. ran Q ) |
110 |
96 109
|
eqeltrrd |
|- ( ph -> _pi e. ran Q ) |
111 |
|
eqid |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) |
112 |
|
isoeq1 |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
113 |
43 61 52
|
3eqtr4ri |
|- ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) |
114 |
|
isoeq5 |
|- ( ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) = ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) -> ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) |
115 |
113 114
|
ax-mp |
|- ( f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) |
116 |
112 115
|
bitrdi |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) ) |
117 |
116
|
cbviotavw |
|- ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) ) |
118 |
|
eqid |
|- { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } = { w e. ( ( -u _pi + X ) (,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } |
119 |
73 74 76 78 82 91 94 110 16 4 17 111 117 118
|
fourierdlem51 |
|- ( ph -> X e. ran ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { ( -u _pi + X ) , ( _pi + X ) } u. { w e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( w + ( k x. T ) ) e. ran Q } ) ) - 1 ) ) , ( { ( -u _pi + X ) , ( _pi + X ) } u. { y e. ( ( -u _pi + X ) [,] ( _pi + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. ran Q } ) ) ) ) |
120 |
|
ax-resscn |
|- RR C_ CC |
121 |
120
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
122 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
123 |
122
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
124 |
1 123
|
fssresd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
125 |
120
|
a1i |
|- ( ph -> RR C_ CC ) |
126 |
124 125
|
fssd |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
127 |
126
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
128 |
122
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
129 |
1 125
|
fssd |
|- ( ph -> F : RR --> CC ) |
130 |
129
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
131 |
|
ssid |
|- RR C_ RR |
132 |
131
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ RR ) |
133 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
134 |
133
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
135 |
133 134
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
136 |
121 130 132 128 135
|
syl22anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
137 |
136
|
dmeqd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
138 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |
139 |
138
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
140 |
139
|
dmeqi |
|- dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
141 |
140
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
142 |
|
cncff |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
143 |
|
fdm |
|- ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
144 |
10 142 143
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
145 |
137 141 144
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
146 |
|
dvcn |
|- ( ( ( RR C_ CC /\ ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) /\ dom ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
147 |
121 127 128 145 146
|
syl31anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
148 |
128 121
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
149 |
88
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
150 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
151 |
150
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
152 |
149 151
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
153 |
152
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
154 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
155 |
154
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
156 |
149 155
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
157 |
85
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
158 |
157
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
159 |
133 153 156 158
|
lptioo1cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
160 |
124
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> RR ) |
161 |
131
|
a1i |
|- ( ph -> RR C_ RR ) |
162 |
125 129 161
|
dvbss |
|- ( ph -> dom ( RR _D F ) C_ RR ) |
163 |
|
dvfre |
|- ( ( F : RR --> RR /\ RR C_ RR ) -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
164 |
1 161 163
|
syl2anc |
|- ( ph -> ( RR _D F ) : dom ( RR _D F ) --> RR ) |
165 |
|
0re |
|- 0 e. RR |
166 |
72 165 71
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
167 |
75 77 166
|
mp2an |
|- -u _pi < _pi |
168 |
167
|
a1i |
|- ( ph -> -u _pi < _pi ) |
169 |
95
|
simplld |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
170 |
10 142
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
171 |
170 148 159 11 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
172 |
156
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
173 |
133 172 152 158
|
lptioo2cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
174 |
170 148 173 12 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota x x e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
175 |
129
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> F : RR --> CC ) |
176 |
|
zre |
|- ( k e. ZZ -> k e. RR ) |
177 |
176
|
adantl |
|- ( ( ph /\ k e. ZZ ) -> k e. RR ) |
178 |
|
2re |
|- 2 e. RR |
179 |
178 71
|
remulcli |
|- ( 2 x. _pi ) e. RR |
180 |
179
|
a1i |
|- ( ph -> ( 2 x. _pi ) e. RR ) |
181 |
2 180
|
eqeltrid |
|- ( ph -> T e. RR ) |
182 |
181
|
adantr |
|- ( ( ph /\ k e. ZZ ) -> T e. RR ) |
183 |
177 182
|
remulcld |
|- ( ( ph /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
184 |
175
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> F : RR --> CC ) |
185 |
182
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> T e. RR ) |
186 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> k e. ZZ ) |
187 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> t e. RR ) |
188 |
3
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
189 |
184 185 186 187 188
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. RR ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) |
190 |
|
eqid |
|- ( RR _D F ) = ( RR _D F ) |
191 |
175 183 189 190
|
fperdvper |
|- ( ( ( ph /\ k e. ZZ ) /\ t e. dom ( RR _D F ) ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
192 |
191
|
an32s |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( t + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) ) |
193 |
192
|
simpld |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom ( RR _D F ) ) |
194 |
192
|
simprd |
|- ( ( ( ph /\ t e. dom ( RR _D F ) ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( t + ( k x. T ) ) ) = ( ( RR _D F ) ` t ) ) |
195 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
196 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
197 |
196
|
fveq2d |
|- ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
198 |
195 197
|
oveq12d |
|- ( j = i -> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
199 |
198
|
cbvmptv |
|- ( j e. ( 0 ..^ M ) |-> ( ( Q ` j ) (,) ( Q ` ( j + 1 ) ) ) ) = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
200 |
|
eqid |
|- ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) = ( t e. RR |-> ( t + ( ( |_ ` ( ( _pi - t ) / T ) ) x. T ) ) ) |
201 |
162 164 73 74 168 82 8 88 169 96 10 171 174 193 194 199 200
|
fourierdlem71 |
|- ( ph -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
202 |
201
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
203 |
|
nfv |
|- F/ t ( ph /\ i e. ( 0 ..^ M ) ) |
204 |
|
nfra1 |
|- F/ t A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z |
205 |
203 204
|
nfan |
|- F/ t ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
206 |
136 139
|
eqtrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
207 |
206
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) ) |
208 |
|
fvres |
|- ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
209 |
207 208
|
sylan9eq |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) = ( ( RR _D F ) ` t ) ) |
210 |
209
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
211 |
210
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) = ( abs ` ( ( RR _D F ) ` t ) ) ) |
212 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
213 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) <-> dom ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
214 |
144 213
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
215 |
214
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom ( RR _D F ) ) |
216 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
217 |
215 216
|
sseldd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> t e. dom ( RR _D F ) ) |
218 |
|
rspa |
|- ( ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z /\ t e. dom ( RR _D F ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
219 |
212 217 218
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) |
220 |
211 219
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) /\ t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
221 |
220
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> ( t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
222 |
205 221
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z ) -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
223 |
222
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
224 |
223
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. z e. RR A. t e. dom ( RR _D F ) ( abs ` ( ( RR _D F ) ` t ) ) <_ z -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) ) |
225 |
202 224
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. z e. RR A. t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ` t ) ) <_ z ) |
226 |
156 152 160 145 225
|
ioodvbdlimc1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
227 |
127 148 159 226 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
228 |
156 152 160 145 225
|
ioodvbdlimc2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
229 |
127 148 173 228 133
|
ellimciota |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( iota y y e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
230 |
|
frel |
|- ( ( RR _D F ) : dom ( RR _D F ) --> RR -> Rel ( RR _D F ) ) |
231 |
164 230
|
syl |
|- ( ph -> Rel ( RR _D F ) ) |
232 |
|
resindm |
|- ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) |
233 |
231 232
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( -oo (,) X ) ) ) |
234 |
|
inss2 |
|- ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) |
235 |
234
|
a1i |
|- ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) |
236 |
164 235
|
fssresd |
|- ( ph -> ( ( RR _D F ) |` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) |
237 |
233 236
|
feq1dd |
|- ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> RR ) |
238 |
237 125
|
fssd |
|- ( ph -> ( ( RR _D F ) |` ( -oo (,) X ) ) : ( ( -oo (,) X ) i^i dom ( RR _D F ) ) --> CC ) |
239 |
|
ioosscn |
|- ( -oo (,) X ) C_ CC |
240 |
|
ssinss1 |
|- ( ( -oo (,) X ) C_ CC -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
241 |
239 240
|
ax-mp |
|- ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC |
242 |
241
|
a1i |
|- ( ph -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
243 |
|
3simpb |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
244 |
|
simp2 |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> x e. dom ( RR _D F ) ) |
245 |
175
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> F : RR --> CC ) |
246 |
182
|
adantr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> T e. RR ) |
247 |
|
simplr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> k e. ZZ ) |
248 |
|
simpr |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> x e. RR ) |
249 |
|
eleq1w |
|- ( x = y -> ( x e. RR <-> y e. RR ) ) |
250 |
249
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. RR ) <-> ( ph /\ y e. RR ) ) ) |
251 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
252 |
251
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
253 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
254 |
252 253
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
255 |
250 254
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
256 |
255 3
|
chvarvv |
|- ( ( ph /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
257 |
256
|
ad4ant14 |
|- ( ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) /\ y e. RR ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
258 |
245 246 247 248 257
|
fperiodmul |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. RR ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
259 |
175 183 258 190
|
fperdvper |
|- ( ( ( ph /\ k e. ZZ ) /\ x e. dom ( RR _D F ) ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) |
260 |
243 244 259
|
syl2anc |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( x + ( k x. T ) ) e. dom ( RR _D F ) /\ ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) ) |
261 |
260
|
simpld |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. dom ( RR _D F ) ) |
262 |
|
oveq2 |
|- ( w = x -> ( _pi - w ) = ( _pi - x ) ) |
263 |
262
|
oveq1d |
|- ( w = x -> ( ( _pi - w ) / T ) = ( ( _pi - x ) / T ) ) |
264 |
263
|
fveq2d |
|- ( w = x -> ( |_ ` ( ( _pi - w ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
265 |
264
|
oveq1d |
|- ( w = x -> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
266 |
265
|
cbvmptv |
|- ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
267 |
|
eqid |
|- ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) = ( x e. RR |-> ( x + ( ( w e. RR |-> ( ( |_ ` ( ( _pi - w ) / T ) ) x. T ) ) ` x ) ) ) |
268 |
73 74 168 82 261 4 266 267 7 8 9 214
|
fourierdlem41 |
|- ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) /\ E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) ) |
269 |
268
|
simpld |
|- ( ph -> E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) |
270 |
133
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
271 |
270
|
a1i |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) |
272 |
241
|
a1i |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC ) |
273 |
|
mnfxr |
|- -oo e. RR* |
274 |
273
|
a1i |
|- ( y e. RR -> -oo e. RR* ) |
275 |
|
rexr |
|- ( y e. RR -> y e. RR* ) |
276 |
|
mnflt |
|- ( y e. RR -> -oo < y ) |
277 |
274 275 276
|
xrltled |
|- ( y e. RR -> -oo <_ y ) |
278 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ y ) -> ( y (,) X ) C_ ( -oo (,) X ) ) |
279 |
274 277 278
|
syl2anc |
|- ( y e. RR -> ( y (,) X ) C_ ( -oo (,) X ) ) |
280 |
279
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( -oo (,) X ) ) |
281 |
|
simp3 |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ dom ( RR _D F ) ) |
282 |
280 281
|
ssind |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) |
283 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
284 |
283
|
lpss3 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) C_ CC /\ ( y (,) X ) C_ ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
285 |
271 272 282 284
|
syl3anc |
|- ( ( ph /\ y e. RR /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
286 |
285
|
3adant3l |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
287 |
275
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) |
288 |
4
|
3ad2ant1 |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. RR ) |
289 |
|
simp3l |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> y < X ) |
290 |
133 287 288 289
|
lptioo2cn |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( y (,) X ) ) ) |
291 |
286 290
|
sseldd |
|- ( ( ph /\ y e. RR /\ ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
292 |
291
|
rexlimdv3a |
|- ( ph -> ( E. y e. RR ( y < X /\ ( y (,) X ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) ) |
293 |
269 292
|
mpd |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( -oo (,) X ) i^i dom ( RR _D F ) ) ) ) |
294 |
260
|
simprd |
|- ( ( ph /\ x e. dom ( RR _D F ) /\ k e. ZZ ) -> ( ( RR _D F ) ` ( x + ( k x. T ) ) ) = ( ( RR _D F ) ` x ) ) |
295 |
|
oveq2 |
|- ( y = x -> ( _pi - y ) = ( _pi - x ) ) |
296 |
295
|
oveq1d |
|- ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) |
297 |
296
|
fveq2d |
|- ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
298 |
297
|
oveq1d |
|- ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
299 |
298
|
cbvmptv |
|- ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x e. RR |-> ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
300 |
|
id |
|- ( z = x -> z = x ) |
301 |
|
fveq2 |
|- ( z = x -> ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) = ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) |
302 |
300 301
|
oveq12d |
|- ( z = x -> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) = ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
303 |
302
|
cbvmptv |
|- ( z e. RR |-> ( z + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` z ) ) ) = ( x e. RR |-> ( x + ( ( y e. RR |-> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ` x ) ) ) |
304 |
73 74 168 7 82 8 9 162 164 261 294 10 174 4 299 303
|
fourierdlem49 |
|- ( ph -> ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) =/= (/) ) |
305 |
238 242 293 304 133
|
ellimciota |
|- ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( -oo (,) X ) ) limCC X ) ) |
306 |
|
resindm |
|- ( Rel ( RR _D F ) -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) |
307 |
231 306
|
syl |
|- ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) = ( ( RR _D F ) |` ( X (,) +oo ) ) ) |
308 |
|
inss2 |
|- ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) |
309 |
308
|
a1i |
|- ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ dom ( RR _D F ) ) |
310 |
164 309
|
fssresd |
|- ( ph -> ( ( RR _D F ) |` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) |
311 |
307 310
|
feq1dd |
|- ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> RR ) |
312 |
311 125
|
fssd |
|- ( ph -> ( ( RR _D F ) |` ( X (,) +oo ) ) : ( ( X (,) +oo ) i^i dom ( RR _D F ) ) --> CC ) |
313 |
|
ioosscn |
|- ( X (,) +oo ) C_ CC |
314 |
|
ssinss1 |
|- ( ( X (,) +oo ) C_ CC -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
315 |
313 314
|
ax-mp |
|- ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC |
316 |
315
|
a1i |
|- ( ph -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
317 |
268
|
simprd |
|- ( ph -> E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) |
318 |
270
|
a1i |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( TopOpen ` CCfld ) e. Top ) |
319 |
315
|
a1i |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC ) |
320 |
|
pnfxr |
|- +oo e. RR* |
321 |
320
|
a1i |
|- ( y e. RR -> +oo e. RR* ) |
322 |
|
ltpnf |
|- ( y e. RR -> y < +oo ) |
323 |
275 321 322
|
xrltled |
|- ( y e. RR -> y <_ +oo ) |
324 |
|
iooss2 |
|- ( ( +oo e. RR* /\ y <_ +oo ) -> ( X (,) y ) C_ ( X (,) +oo ) ) |
325 |
321 323 324
|
syl2anc |
|- ( y e. RR -> ( X (,) y ) C_ ( X (,) +oo ) ) |
326 |
325
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( X (,) +oo ) ) |
327 |
|
simp3 |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ dom ( RR _D F ) ) |
328 |
326 327
|
ssind |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) |
329 |
283
|
lpss3 |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) C_ CC /\ ( X (,) y ) C_ ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
330 |
318 319 328 329
|
syl3anc |
|- ( ( ph /\ y e. RR /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
331 |
330
|
3adant3l |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) C_ ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
332 |
275
|
3ad2ant2 |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> y e. RR* ) |
333 |
4
|
3ad2ant1 |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. RR ) |
334 |
|
simp3l |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X < y ) |
335 |
133 332 333 334
|
lptioo1cn |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) y ) ) ) |
336 |
331 335
|
sseldd |
|- ( ( ph /\ y e. RR /\ ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
337 |
336
|
rexlimdv3a |
|- ( ph -> ( E. y e. RR ( X < y /\ ( X (,) y ) C_ dom ( RR _D F ) ) -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) ) |
338 |
317 337
|
mpd |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( ( X (,) +oo ) i^i dom ( RR _D F ) ) ) ) |
339 |
|
biid |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ w = ( X + ( k x. T ) ) ) ) |
340 |
73 74 168 7 82 8 9 164 261 294 10 171 4 299 303 339
|
fourierdlem48 |
|- ( ph -> ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
341 |
312 316 338 340 133
|
ellimciota |
|- ( ph -> ( iota x x e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) e. ( ( ( RR _D F ) |` ( X (,) +oo ) ) limCC X ) ) |
342 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
343 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
344 |
343
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) |
345 |
342 344
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
346 |
|
fveq2 |
|- ( n = k -> ( B ` n ) = ( B ` k ) ) |
347 |
343
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
348 |
346 347
|
oveq12d |
|- ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
349 |
345 348
|
oveq12d |
|- ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
350 |
349
|
cbvsumv |
|- sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
351 |
|
oveq2 |
|- ( j = m -> ( 1 ... j ) = ( 1 ... m ) ) |
352 |
351
|
eqcomd |
|- ( j = m -> ( 1 ... m ) = ( 1 ... j ) ) |
353 |
352
|
sumeq1d |
|- ( j = m -> sum_ k e. ( 1 ... m ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
354 |
350 353
|
eqtr2id |
|- ( j = m -> sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) = sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
355 |
354
|
oveq2d |
|- ( j = m -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
356 |
355
|
cbvmptv |
|- ( j e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ k e. ( 1 ... j ) ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) ) = ( m e. NN |-> ( ( ( A ` 0 ) / 2 ) + sum_ n e. ( 1 ... m ) ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) ) |
357 |
|
fdm |
|- ( F : RR --> RR -> dom F = RR ) |
358 |
1 357
|
syl |
|- ( ph -> dom F = RR ) |
359 |
358 161
|
eqsstrd |
|- ( ph -> dom F C_ RR ) |
360 |
358
|
feq2d |
|- ( ph -> ( F : dom F --> RR <-> F : RR --> RR ) ) |
361 |
1 360
|
mpbird |
|- ( ph -> F : dom F --> RR ) |
362 |
359
|
sselda |
|- ( ( ph /\ t e. dom F ) -> t e. RR ) |
363 |
362
|
adantr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> t e. RR ) |
364 |
176
|
adantl |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> k e. RR ) |
365 |
182
|
adantlr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> T e. RR ) |
366 |
364 365
|
remulcld |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( k x. T ) e. RR ) |
367 |
363 366
|
readdcld |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. RR ) |
368 |
358
|
eqcomd |
|- ( ph -> RR = dom F ) |
369 |
368
|
ad2antrr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> RR = dom F ) |
370 |
367 369
|
eleqtrd |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( t + ( k x. T ) ) e. dom F ) |
371 |
|
id |
|- ( ( ph /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
372 |
371
|
adantlr |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( ph /\ k e. ZZ ) ) |
373 |
372 363 189
|
syl2anc |
|- ( ( ( ph /\ t e. dom F ) /\ k e. ZZ ) -> ( F ` ( t + ( k x. T ) ) ) = ( F ` t ) ) |
374 |
359 361 73 74 168 82 8 88 169 96 147 227 229 370 373 199 200
|
fourierdlem71 |
|- ( ph -> E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u ) |
375 |
358
|
raleqdv |
|- ( ph -> ( A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) |
376 |
375
|
rexbidv |
|- ( ph -> ( E. u e. RR A. t e. dom F ( abs ` ( F ` t ) ) <_ u <-> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) ) |
377 |
374 376
|
mpbid |
|- ( ph -> E. u e. RR A. t e. RR ( abs ` ( F ` t ) ) <_ u ) |
378 |
1 38 7 8 9 45 70 4 119 2 3 147 227 229 10 305 341 5 6 13 14 356 15 377 201 4
|
fourierdlem112 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |