Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem114.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem114.t |
|- T = ( 2 x. _pi ) |
3 |
|
fourierdlem114.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fourierdlem114.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
5 |
|
fourierdlem114.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
6 |
|
fourierdlem114.gcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
7 |
|
fourierdlem114.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
8 |
|
fourierdlem114.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
9 |
|
fourierdlem114.x |
|- ( ph -> X e. RR ) |
10 |
|
fourierdlem114.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
11 |
|
fourierdlem114.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
12 |
|
fourierdlem114.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
13 |
|
fourierdlem114.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
14 |
|
fourierdlem114.s |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
15 |
|
fourierdlem114.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
16 |
|
fourierdlem114.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
17 |
|
fourierdlem114.h |
|- H = ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
18 |
|
fourierdlem114.m |
|- M = ( ( # ` H ) - 1 ) |
19 |
|
fourierdlem114.q |
|- Q = ( iota g g Isom < , < ( ( 0 ... M ) , H ) ) |
20 |
|
2z |
|- 2 e. ZZ |
21 |
20
|
a1i |
|- ( ph -> 2 e. ZZ ) |
22 |
|
tpfi |
|- { -u _pi , _pi , ( E ` X ) } e. Fin |
23 |
22
|
a1i |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } e. Fin ) |
24 |
|
pire |
|- _pi e. RR |
25 |
24
|
renegcli |
|- -u _pi e. RR |
26 |
25
|
rexri |
|- -u _pi e. RR* |
27 |
24
|
rexri |
|- _pi e. RR* |
28 |
|
negpilt0 |
|- -u _pi < 0 |
29 |
|
pipos |
|- 0 < _pi |
30 |
|
0re |
|- 0 e. RR |
31 |
25 30 24
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
32 |
28 29 31
|
mp2an |
|- -u _pi < _pi |
33 |
25 24 32
|
ltleii |
|- -u _pi <_ _pi |
34 |
|
prunioo |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) ) |
35 |
26 27 33 34
|
mp3an |
|- ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) |
36 |
35
|
difeq1i |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( -u _pi [,] _pi ) \ dom G ) |
37 |
|
difundir |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
38 |
36 37
|
eqtr3i |
|- ( ( -u _pi [,] _pi ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
39 |
|
prfi |
|- { -u _pi , _pi } e. Fin |
40 |
|
diffi |
|- ( { -u _pi , _pi } e. Fin -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
41 |
39 40
|
mp1i |
|- ( ph -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
42 |
|
unfi |
|- ( ( ( ( -u _pi (,) _pi ) \ dom G ) e. Fin /\ ( { -u _pi , _pi } \ dom G ) e. Fin ) -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
43 |
5 41 42
|
syl2anc |
|- ( ph -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
44 |
38 43
|
eqeltrid |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) |
45 |
|
unfi |
|- ( ( { -u _pi , _pi , ( E ` X ) } e. Fin /\ ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
46 |
23 44 45
|
syl2anc |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
47 |
17 46
|
eqeltrid |
|- ( ph -> H e. Fin ) |
48 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
49 |
47 48
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
50 |
49
|
nn0zd |
|- ( ph -> ( # ` H ) e. ZZ ) |
51 |
25 32
|
ltneii |
|- -u _pi =/= _pi |
52 |
|
hashprg |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) ) |
53 |
25 24 52
|
mp2an |
|- ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) |
54 |
51 53
|
mpbi |
|- ( # ` { -u _pi , _pi } ) = 2 |
55 |
22
|
elexi |
|- { -u _pi , _pi , ( E ` X ) } e. _V |
56 |
|
ovex |
|- ( -u _pi [,] _pi ) e. _V |
57 |
|
difexg |
|- ( ( -u _pi [,] _pi ) e. _V -> ( ( -u _pi [,] _pi ) \ dom G ) e. _V ) |
58 |
56 57
|
ax-mp |
|- ( ( -u _pi [,] _pi ) \ dom G ) e. _V |
59 |
55 58
|
unex |
|- ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. _V |
60 |
17 59
|
eqeltri |
|- H e. _V |
61 |
|
negex |
|- -u _pi e. _V |
62 |
61
|
tpid1 |
|- -u _pi e. { -u _pi , _pi , ( E ` X ) } |
63 |
24
|
elexi |
|- _pi e. _V |
64 |
63
|
tpid2 |
|- _pi e. { -u _pi , _pi , ( E ` X ) } |
65 |
|
prssi |
|- ( ( -u _pi e. { -u _pi , _pi , ( E ` X ) } /\ _pi e. { -u _pi , _pi , ( E ` X ) } ) -> { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } ) |
66 |
62 64 65
|
mp2an |
|- { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } |
67 |
|
ssun1 |
|- { -u _pi , _pi , ( E ` X ) } C_ ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
68 |
67 17
|
sseqtrri |
|- { -u _pi , _pi , ( E ` X ) } C_ H |
69 |
66 68
|
sstri |
|- { -u _pi , _pi } C_ H |
70 |
|
hashss |
|- ( ( H e. _V /\ { -u _pi , _pi } C_ H ) -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
71 |
60 69 70
|
mp2an |
|- ( # ` { -u _pi , _pi } ) <_ ( # ` H ) |
72 |
71
|
a1i |
|- ( ph -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
73 |
54 72
|
eqbrtrrid |
|- ( ph -> 2 <_ ( # ` H ) ) |
74 |
|
eluz2 |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( # ` H ) e. ZZ /\ 2 <_ ( # ` H ) ) ) |
75 |
21 50 73 74
|
syl3anbrc |
|- ( ph -> ( # ` H ) e. ( ZZ>= ` 2 ) ) |
76 |
|
uz2m1nn |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) -> ( ( # ` H ) - 1 ) e. NN ) |
77 |
75 76
|
syl |
|- ( ph -> ( ( # ` H ) - 1 ) e. NN ) |
78 |
18 77
|
eqeltrid |
|- ( ph -> M e. NN ) |
79 |
25
|
a1i |
|- ( ph -> -u _pi e. RR ) |
80 |
24
|
a1i |
|- ( ph -> _pi e. RR ) |
81 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
82 |
32
|
a1i |
|- ( ph -> -u _pi < _pi ) |
83 |
|
picn |
|- _pi e. CC |
84 |
83
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
85 |
83 83
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
86 |
84 2 85
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
87 |
79 80 82 86 16
|
fourierdlem4 |
|- ( ph -> E : RR --> ( -u _pi (,] _pi ) ) |
88 |
87 9
|
ffvelrnd |
|- ( ph -> ( E ` X ) e. ( -u _pi (,] _pi ) ) |
89 |
81 88
|
sselid |
|- ( ph -> ( E ` X ) e. RR ) |
90 |
79 80 89
|
3jca |
|- ( ph -> ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) ) |
91 |
|
fvex |
|- ( E ` X ) e. _V |
92 |
61 63 91
|
tpss |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) <-> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
93 |
90 92
|
sylib |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
94 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
95 |
25 24 94
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
96 |
|
ssdifss |
|- ( ( -u _pi [,] _pi ) C_ RR -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
97 |
95 96
|
mp1i |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
98 |
93 97
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ RR ) |
99 |
17 98
|
eqsstrid |
|- ( ph -> H C_ RR ) |
100 |
47 99 19 18
|
fourierdlem36 |
|- ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
101 |
|
isof1o |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -1-1-onto-> H ) |
102 |
|
f1of |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) --> H ) |
103 |
100 101 102
|
3syl |
|- ( ph -> Q : ( 0 ... M ) --> H ) |
104 |
103 99
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
105 |
|
reex |
|- RR e. _V |
106 |
|
ovex |
|- ( 0 ... M ) e. _V |
107 |
105 106
|
elmap |
|- ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) |
108 |
104 107
|
sylibr |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
109 |
|
fveq2 |
|- ( 0 = i -> ( Q ` 0 ) = ( Q ` i ) ) |
110 |
109
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) = ( Q ` i ) ) |
111 |
104
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
112 |
111
|
leidd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` i ) ) |
113 |
112
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` i ) <_ ( Q ` i ) ) |
114 |
110 113
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
115 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
116 |
115
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
117 |
116
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i e. RR ) |
118 |
|
elfzle1 |
|- ( i e. ( 0 ... M ) -> 0 <_ i ) |
119 |
118
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 <_ i ) |
120 |
|
neqne |
|- ( -. 0 = i -> 0 =/= i ) |
121 |
120
|
necomd |
|- ( -. 0 = i -> i =/= 0 ) |
122 |
121
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i =/= 0 ) |
123 |
117 119 122
|
ne0gt0d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 < i ) |
124 |
|
nnssnn0 |
|- NN C_ NN0 |
125 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
126 |
124 125
|
sseqtri |
|- NN C_ ( ZZ>= ` 0 ) |
127 |
126 78
|
sselid |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
128 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
129 |
127 128
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
130 |
103 129
|
ffvelrnd |
|- ( ph -> ( Q ` 0 ) e. H ) |
131 |
99 130
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
132 |
131
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) e. RR ) |
133 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` i ) e. RR ) |
134 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> 0 < i ) |
135 |
100
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
136 |
129
|
anim1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
137 |
136
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
138 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
139 |
135 137 138
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
140 |
134 139
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) < ( Q ` i ) ) |
141 |
132 133 140
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
142 |
123 141
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
143 |
114 142
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
144 |
143
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
145 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` i ) = -u _pi ) |
146 |
144 145
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ -u _pi ) |
147 |
79
|
rexrd |
|- ( ph -> -u _pi e. RR* ) |
148 |
80
|
rexrd |
|- ( ph -> _pi e. RR* ) |
149 |
|
lbicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> -u _pi e. ( -u _pi [,] _pi ) ) |
150 |
26 27 33 149
|
mp3an |
|- -u _pi e. ( -u _pi [,] _pi ) |
151 |
150
|
a1i |
|- ( ph -> -u _pi e. ( -u _pi [,] _pi ) ) |
152 |
|
ubicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> _pi e. ( -u _pi [,] _pi ) ) |
153 |
26 27 33 152
|
mp3an |
|- _pi e. ( -u _pi [,] _pi ) |
154 |
153
|
a1i |
|- ( ph -> _pi e. ( -u _pi [,] _pi ) ) |
155 |
|
iocssicc |
|- ( -u _pi (,] _pi ) C_ ( -u _pi [,] _pi ) |
156 |
155 88
|
sselid |
|- ( ph -> ( E ` X ) e. ( -u _pi [,] _pi ) ) |
157 |
|
tpssi |
|- ( ( -u _pi e. ( -u _pi [,] _pi ) /\ _pi e. ( -u _pi [,] _pi ) /\ ( E ` X ) e. ( -u _pi [,] _pi ) ) -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
158 |
151 154 156 157
|
syl3anc |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
159 |
|
difssd |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ ( -u _pi [,] _pi ) ) |
160 |
158 159
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ ( -u _pi [,] _pi ) ) |
161 |
17 160
|
eqsstrid |
|- ( ph -> H C_ ( -u _pi [,] _pi ) ) |
162 |
161 130
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) |
163 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) -> -u _pi <_ ( Q ` 0 ) ) |
164 |
147 148 162 163
|
syl3anc |
|- ( ph -> -u _pi <_ ( Q ` 0 ) ) |
165 |
164
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi <_ ( Q ` 0 ) ) |
166 |
131
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) e. RR ) |
167 |
25
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi e. RR ) |
168 |
166 167
|
letri3d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( ( Q ` 0 ) = -u _pi <-> ( ( Q ` 0 ) <_ -u _pi /\ -u _pi <_ ( Q ` 0 ) ) ) ) |
169 |
146 165 168
|
mpbir2and |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) = -u _pi ) |
170 |
68 62
|
sselii |
|- -u _pi e. H |
171 |
|
f1ofo |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) -onto-> H ) |
172 |
101 171
|
syl |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -onto-> H ) |
173 |
|
forn |
|- ( Q : ( 0 ... M ) -onto-> H -> ran Q = H ) |
174 |
100 172 173
|
3syl |
|- ( ph -> ran Q = H ) |
175 |
170 174
|
eleqtrrid |
|- ( ph -> -u _pi e. ran Q ) |
176 |
|
ffn |
|- ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) ) |
177 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
178 |
103 176 177
|
3syl |
|- ( ph -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
179 |
175 178
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) |
180 |
169 179
|
r19.29a |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
181 |
68 64
|
sselii |
|- _pi e. H |
182 |
181 174
|
eleqtrrid |
|- ( ph -> _pi e. ran Q ) |
183 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
184 |
103 176 183
|
3syl |
|- ( ph -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
185 |
182 184
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) |
186 |
103 161
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
187 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
188 |
127 187
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
189 |
186 188
|
ffvelrnd |
|- ( ph -> ( Q ` M ) e. ( -u _pi [,] _pi ) ) |
190 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` M ) e. ( -u _pi [,] _pi ) ) -> ( Q ` M ) <_ _pi ) |
191 |
147 148 189 190
|
syl3anc |
|- ( ph -> ( Q ` M ) <_ _pi ) |
192 |
191
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) <_ _pi ) |
193 |
|
id |
|- ( ( Q ` i ) = _pi -> ( Q ` i ) = _pi ) |
194 |
193
|
eqcomd |
|- ( ( Q ` i ) = _pi -> _pi = ( Q ` i ) ) |
195 |
194
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi = ( Q ` i ) ) |
196 |
112
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` i ) ) |
197 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
198 |
197
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) = ( Q ` M ) ) |
199 |
196 198
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
200 |
116
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i e. RR ) |
201 |
|
elfzel2 |
|- ( i e. ( 0 ... M ) -> M e. ZZ ) |
202 |
201
|
zred |
|- ( i e. ( 0 ... M ) -> M e. RR ) |
203 |
202
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M e. RR ) |
204 |
|
elfzle2 |
|- ( i e. ( 0 ... M ) -> i <_ M ) |
205 |
204
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i <_ M ) |
206 |
|
neqne |
|- ( -. i = M -> i =/= M ) |
207 |
206
|
necomd |
|- ( -. i = M -> M =/= i ) |
208 |
207
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M =/= i ) |
209 |
200 203 205 208
|
leneltd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i < M ) |
210 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) e. RR ) |
211 |
95 189
|
sselid |
|- ( ph -> ( Q ` M ) e. RR ) |
212 |
211
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` M ) e. RR ) |
213 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> i < M ) |
214 |
100
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
215 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
216 |
188
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( 0 ... M ) ) |
217 |
215 216
|
jca |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
218 |
217
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
219 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
220 |
214 218 219
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
221 |
213 220
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) < ( Q ` M ) ) |
222 |
210 212 221
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
223 |
209 222
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
224 |
199 223
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) |
225 |
224
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` i ) <_ ( Q ` M ) ) |
226 |
195 225
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi <_ ( Q ` M ) ) |
227 |
211
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) e. RR ) |
228 |
24
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi e. RR ) |
229 |
227 228
|
letri3d |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( ( Q ` M ) = _pi <-> ( ( Q ` M ) <_ _pi /\ _pi <_ ( Q ` M ) ) ) ) |
230 |
192 226 229
|
mpbir2and |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) = _pi ) |
231 |
230
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( 0 ... M ) ( Q ` i ) = _pi -> ( Q ` M ) = _pi ) ) |
232 |
185 231
|
mpd |
|- ( ph -> ( Q ` M ) = _pi ) |
233 |
|
elfzoelz |
|- ( i e. ( 0 ..^ M ) -> i e. ZZ ) |
234 |
233
|
zred |
|- ( i e. ( 0 ..^ M ) -> i e. RR ) |
235 |
234
|
ltp1d |
|- ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) |
236 |
235
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i < ( i + 1 ) ) |
237 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
238 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
239 |
237 238
|
jca |
|- ( i e. ( 0 ..^ M ) -> ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) |
240 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
241 |
100 239 240
|
syl2an |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
242 |
236 241
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
243 |
242
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
244 |
180 232 243
|
jca31 |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
245 |
15
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
246 |
78 245
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
247 |
108 244 246
|
mpbir2and |
|- ( ph -> Q e. ( P ` M ) ) |
248 |
4
|
reseq1i |
|- ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
249 |
26
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
250 |
27
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
251 |
186
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
252 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
253 |
249 250 251 252
|
fourierdlem27 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi (,) _pi ) ) |
254 |
253
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
255 |
248 254
|
eqtr2id |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
256 |
6 15 78 247 17 174
|
fourierdlem38 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
257 |
255 256
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
258 |
255
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
259 |
6
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( dom G -cn-> CC ) ) |
260 |
7
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
261 |
8
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
262 |
100
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
263 |
262 101 102
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> H ) |
264 |
89
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) e. RR ) |
265 |
262 172 173
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran Q = H ) |
266 |
259 260 261 262 263 252 242 253 264 17 265
|
fourierdlem46 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) /\ ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) ) |
267 |
266
|
simpld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
268 |
258 267
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
269 |
255
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
270 |
266
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
271 |
269 270
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
272 |
91
|
tpid3 |
|- ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } |
273 |
|
elun1 |
|- ( ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) |
274 |
272 273
|
mp1i |
|- ( ph -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) |
275 |
274 17
|
eleqtrrdi |
|- ( ph -> ( E ` X ) e. H ) |
276 |
275 174
|
eleqtrrd |
|- ( ph -> ( E ` X ) e. ran Q ) |
277 |
1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276
|
fourierdlem113 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |