| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fourierdlem114.f |
|- ( ph -> F : RR --> RR ) |
| 2 |
|
fourierdlem114.t |
|- T = ( 2 x. _pi ) |
| 3 |
|
fourierdlem114.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
| 4 |
|
fourierdlem114.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
| 5 |
|
fourierdlem114.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
| 6 |
|
fourierdlem114.gcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
| 7 |
|
fourierdlem114.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 8 |
|
fourierdlem114.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 9 |
|
fourierdlem114.x |
|- ( ph -> X e. RR ) |
| 10 |
|
fourierdlem114.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
| 11 |
|
fourierdlem114.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
| 12 |
|
fourierdlem114.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
| 13 |
|
fourierdlem114.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
| 14 |
|
fourierdlem114.s |
|- S = ( n e. NN |-> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) |
| 15 |
|
fourierdlem114.p |
|- P = ( n e. NN |-> { p e. ( RR ^m ( 0 ... n ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` n ) = _pi ) /\ A. i e. ( 0 ..^ n ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
| 16 |
|
fourierdlem114.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
| 17 |
|
fourierdlem114.h |
|- H = ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
| 18 |
|
fourierdlem114.m |
|- M = ( ( # ` H ) - 1 ) |
| 19 |
|
fourierdlem114.q |
|- Q = ( iota g g Isom < , < ( ( 0 ... M ) , H ) ) |
| 20 |
|
2z |
|- 2 e. ZZ |
| 21 |
20
|
a1i |
|- ( ph -> 2 e. ZZ ) |
| 22 |
|
tpfi |
|- { -u _pi , _pi , ( E ` X ) } e. Fin |
| 23 |
22
|
a1i |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } e. Fin ) |
| 24 |
|
pire |
|- _pi e. RR |
| 25 |
24
|
renegcli |
|- -u _pi e. RR |
| 26 |
25
|
rexri |
|- -u _pi e. RR* |
| 27 |
24
|
rexri |
|- _pi e. RR* |
| 28 |
|
negpilt0 |
|- -u _pi < 0 |
| 29 |
|
pipos |
|- 0 < _pi |
| 30 |
|
0re |
|- 0 e. RR |
| 31 |
25 30 24
|
lttri |
|- ( ( -u _pi < 0 /\ 0 < _pi ) -> -u _pi < _pi ) |
| 32 |
28 29 31
|
mp2an |
|- -u _pi < _pi |
| 33 |
25 24 32
|
ltleii |
|- -u _pi <_ _pi |
| 34 |
|
prunioo |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) ) |
| 35 |
26 27 33 34
|
mp3an |
|- ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) = ( -u _pi [,] _pi ) |
| 36 |
35
|
difeq1i |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( -u _pi [,] _pi ) \ dom G ) |
| 37 |
|
difundir |
|- ( ( ( -u _pi (,) _pi ) u. { -u _pi , _pi } ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
| 38 |
36 37
|
eqtr3i |
|- ( ( -u _pi [,] _pi ) \ dom G ) = ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) |
| 39 |
|
prfi |
|- { -u _pi , _pi } e. Fin |
| 40 |
|
diffi |
|- ( { -u _pi , _pi } e. Fin -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
| 41 |
39 40
|
mp1i |
|- ( ph -> ( { -u _pi , _pi } \ dom G ) e. Fin ) |
| 42 |
|
unfi |
|- ( ( ( ( -u _pi (,) _pi ) \ dom G ) e. Fin /\ ( { -u _pi , _pi } \ dom G ) e. Fin ) -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
| 43 |
5 41 42
|
syl2anc |
|- ( ph -> ( ( ( -u _pi (,) _pi ) \ dom G ) u. ( { -u _pi , _pi } \ dom G ) ) e. Fin ) |
| 44 |
38 43
|
eqeltrid |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) |
| 45 |
|
unfi |
|- ( ( { -u _pi , _pi , ( E ` X ) } e. Fin /\ ( ( -u _pi [,] _pi ) \ dom G ) e. Fin ) -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
| 46 |
23 44 45
|
syl2anc |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. Fin ) |
| 47 |
17 46
|
eqeltrid |
|- ( ph -> H e. Fin ) |
| 48 |
|
hashcl |
|- ( H e. Fin -> ( # ` H ) e. NN0 ) |
| 49 |
47 48
|
syl |
|- ( ph -> ( # ` H ) e. NN0 ) |
| 50 |
49
|
nn0zd |
|- ( ph -> ( # ` H ) e. ZZ ) |
| 51 |
25 32
|
ltneii |
|- -u _pi =/= _pi |
| 52 |
|
hashprg |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) ) |
| 53 |
25 24 52
|
mp2an |
|- ( -u _pi =/= _pi <-> ( # ` { -u _pi , _pi } ) = 2 ) |
| 54 |
51 53
|
mpbi |
|- ( # ` { -u _pi , _pi } ) = 2 |
| 55 |
22
|
elexi |
|- { -u _pi , _pi , ( E ` X ) } e. _V |
| 56 |
|
ovex |
|- ( -u _pi [,] _pi ) e. _V |
| 57 |
|
difexg |
|- ( ( -u _pi [,] _pi ) e. _V -> ( ( -u _pi [,] _pi ) \ dom G ) e. _V ) |
| 58 |
56 57
|
ax-mp |
|- ( ( -u _pi [,] _pi ) \ dom G ) e. _V |
| 59 |
55 58
|
unex |
|- ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) e. _V |
| 60 |
17 59
|
eqeltri |
|- H e. _V |
| 61 |
|
negex |
|- -u _pi e. _V |
| 62 |
61
|
tpid1 |
|- -u _pi e. { -u _pi , _pi , ( E ` X ) } |
| 63 |
24
|
elexi |
|- _pi e. _V |
| 64 |
63
|
tpid2 |
|- _pi e. { -u _pi , _pi , ( E ` X ) } |
| 65 |
|
prssi |
|- ( ( -u _pi e. { -u _pi , _pi , ( E ` X ) } /\ _pi e. { -u _pi , _pi , ( E ` X ) } ) -> { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } ) |
| 66 |
62 64 65
|
mp2an |
|- { -u _pi , _pi } C_ { -u _pi , _pi , ( E ` X ) } |
| 67 |
|
ssun1 |
|- { -u _pi , _pi , ( E ` X ) } C_ ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
| 68 |
67 17
|
sseqtrri |
|- { -u _pi , _pi , ( E ` X ) } C_ H |
| 69 |
66 68
|
sstri |
|- { -u _pi , _pi } C_ H |
| 70 |
|
hashss |
|- ( ( H e. _V /\ { -u _pi , _pi } C_ H ) -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
| 71 |
60 69 70
|
mp2an |
|- ( # ` { -u _pi , _pi } ) <_ ( # ` H ) |
| 72 |
71
|
a1i |
|- ( ph -> ( # ` { -u _pi , _pi } ) <_ ( # ` H ) ) |
| 73 |
54 72
|
eqbrtrrid |
|- ( ph -> 2 <_ ( # ` H ) ) |
| 74 |
|
eluz2 |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ ( # ` H ) e. ZZ /\ 2 <_ ( # ` H ) ) ) |
| 75 |
21 50 73 74
|
syl3anbrc |
|- ( ph -> ( # ` H ) e. ( ZZ>= ` 2 ) ) |
| 76 |
|
uz2m1nn |
|- ( ( # ` H ) e. ( ZZ>= ` 2 ) -> ( ( # ` H ) - 1 ) e. NN ) |
| 77 |
75 76
|
syl |
|- ( ph -> ( ( # ` H ) - 1 ) e. NN ) |
| 78 |
18 77
|
eqeltrid |
|- ( ph -> M e. NN ) |
| 79 |
25
|
a1i |
|- ( ph -> -u _pi e. RR ) |
| 80 |
24
|
a1i |
|- ( ph -> _pi e. RR ) |
| 81 |
|
negpitopissre |
|- ( -u _pi (,] _pi ) C_ RR |
| 82 |
32
|
a1i |
|- ( ph -> -u _pi < _pi ) |
| 83 |
|
picn |
|- _pi e. CC |
| 84 |
83
|
2timesi |
|- ( 2 x. _pi ) = ( _pi + _pi ) |
| 85 |
83 83
|
subnegi |
|- ( _pi - -u _pi ) = ( _pi + _pi ) |
| 86 |
84 2 85
|
3eqtr4i |
|- T = ( _pi - -u _pi ) |
| 87 |
79 80 82 86 16
|
fourierdlem4 |
|- ( ph -> E : RR --> ( -u _pi (,] _pi ) ) |
| 88 |
87 9
|
ffvelcdmd |
|- ( ph -> ( E ` X ) e. ( -u _pi (,] _pi ) ) |
| 89 |
81 88
|
sselid |
|- ( ph -> ( E ` X ) e. RR ) |
| 90 |
79 80 89
|
3jca |
|- ( ph -> ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) ) |
| 91 |
|
fvex |
|- ( E ` X ) e. _V |
| 92 |
61 63 91
|
tpss |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ ( E ` X ) e. RR ) <-> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
| 93 |
90 92
|
sylib |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ RR ) |
| 94 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
| 95 |
25 24 94
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
| 96 |
|
ssdifss |
|- ( ( -u _pi [,] _pi ) C_ RR -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
| 97 |
95 96
|
mp1i |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ RR ) |
| 98 |
93 97
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ RR ) |
| 99 |
17 98
|
eqsstrid |
|- ( ph -> H C_ RR ) |
| 100 |
47 99 19 18
|
fourierdlem36 |
|- ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 101 |
|
isof1o |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -1-1-onto-> H ) |
| 102 |
|
f1of |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) --> H ) |
| 103 |
100 101 102
|
3syl |
|- ( ph -> Q : ( 0 ... M ) --> H ) |
| 104 |
103 99
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
| 105 |
|
reex |
|- RR e. _V |
| 106 |
|
ovex |
|- ( 0 ... M ) e. _V |
| 107 |
105 106
|
elmap |
|- ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) |
| 108 |
104 107
|
sylibr |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
| 109 |
|
fveq2 |
|- ( 0 = i -> ( Q ` 0 ) = ( Q ` i ) ) |
| 110 |
109
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) = ( Q ` i ) ) |
| 111 |
104
|
ffvelcdmda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
| 112 |
111
|
leidd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 113 |
112
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 114 |
110 113
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 115 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
| 116 |
115
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
| 117 |
116
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i e. RR ) |
| 118 |
|
elfzle1 |
|- ( i e. ( 0 ... M ) -> 0 <_ i ) |
| 119 |
118
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 <_ i ) |
| 120 |
|
neqne |
|- ( -. 0 = i -> 0 =/= i ) |
| 121 |
120
|
necomd |
|- ( -. 0 = i -> i =/= 0 ) |
| 122 |
121
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> i =/= 0 ) |
| 123 |
117 119 122
|
ne0gt0d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> 0 < i ) |
| 124 |
|
nnssnn0 |
|- NN C_ NN0 |
| 125 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 126 |
124 125
|
sseqtri |
|- NN C_ ( ZZ>= ` 0 ) |
| 127 |
126 78
|
sselid |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
| 128 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
| 129 |
127 128
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
| 130 |
103 129
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. H ) |
| 131 |
99 130
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
| 132 |
131
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) e. RR ) |
| 133 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` i ) e. RR ) |
| 134 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> 0 < i ) |
| 135 |
100
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 136 |
129
|
anim1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
| 137 |
136
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) |
| 138 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( 0 e. ( 0 ... M ) /\ i e. ( 0 ... M ) ) ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
| 139 |
135 137 138
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( 0 < i <-> ( Q ` 0 ) < ( Q ` i ) ) ) |
| 140 |
134 139
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) < ( Q ` i ) ) |
| 141 |
132 133 140
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ 0 < i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 142 |
123 141
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. 0 = i ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 143 |
114 142
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 144 |
143
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
| 145 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` i ) = -u _pi ) |
| 146 |
144 145
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) <_ -u _pi ) |
| 147 |
79
|
rexrd |
|- ( ph -> -u _pi e. RR* ) |
| 148 |
80
|
rexrd |
|- ( ph -> _pi e. RR* ) |
| 149 |
|
lbicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> -u _pi e. ( -u _pi [,] _pi ) ) |
| 150 |
26 27 33 149
|
mp3an |
|- -u _pi e. ( -u _pi [,] _pi ) |
| 151 |
150
|
a1i |
|- ( ph -> -u _pi e. ( -u _pi [,] _pi ) ) |
| 152 |
|
ubicc2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ -u _pi <_ _pi ) -> _pi e. ( -u _pi [,] _pi ) ) |
| 153 |
26 27 33 152
|
mp3an |
|- _pi e. ( -u _pi [,] _pi ) |
| 154 |
153
|
a1i |
|- ( ph -> _pi e. ( -u _pi [,] _pi ) ) |
| 155 |
|
iocssicc |
|- ( -u _pi (,] _pi ) C_ ( -u _pi [,] _pi ) |
| 156 |
155 88
|
sselid |
|- ( ph -> ( E ` X ) e. ( -u _pi [,] _pi ) ) |
| 157 |
|
tpssi |
|- ( ( -u _pi e. ( -u _pi [,] _pi ) /\ _pi e. ( -u _pi [,] _pi ) /\ ( E ` X ) e. ( -u _pi [,] _pi ) ) -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
| 158 |
151 154 156 157
|
syl3anc |
|- ( ph -> { -u _pi , _pi , ( E ` X ) } C_ ( -u _pi [,] _pi ) ) |
| 159 |
|
difssd |
|- ( ph -> ( ( -u _pi [,] _pi ) \ dom G ) C_ ( -u _pi [,] _pi ) ) |
| 160 |
158 159
|
unssd |
|- ( ph -> ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) C_ ( -u _pi [,] _pi ) ) |
| 161 |
17 160
|
eqsstrid |
|- ( ph -> H C_ ( -u _pi [,] _pi ) ) |
| 162 |
161 130
|
sseldd |
|- ( ph -> ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) |
| 163 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` 0 ) e. ( -u _pi [,] _pi ) ) -> -u _pi <_ ( Q ` 0 ) ) |
| 164 |
147 148 162 163
|
syl3anc |
|- ( ph -> -u _pi <_ ( Q ` 0 ) ) |
| 165 |
164
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi <_ ( Q ` 0 ) ) |
| 166 |
131
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) e. RR ) |
| 167 |
25
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> -u _pi e. RR ) |
| 168 |
166 167
|
letri3d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( ( Q ` 0 ) = -u _pi <-> ( ( Q ` 0 ) <_ -u _pi /\ -u _pi <_ ( Q ` 0 ) ) ) ) |
| 169 |
146 165 168
|
mpbir2and |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( Q ` i ) = -u _pi ) -> ( Q ` 0 ) = -u _pi ) |
| 170 |
68 62
|
sselii |
|- -u _pi e. H |
| 171 |
|
f1ofo |
|- ( Q : ( 0 ... M ) -1-1-onto-> H -> Q : ( 0 ... M ) -onto-> H ) |
| 172 |
101 171
|
syl |
|- ( Q Isom < , < ( ( 0 ... M ) , H ) -> Q : ( 0 ... M ) -onto-> H ) |
| 173 |
|
forn |
|- ( Q : ( 0 ... M ) -onto-> H -> ran Q = H ) |
| 174 |
100 172 173
|
3syl |
|- ( ph -> ran Q = H ) |
| 175 |
170 174
|
eleqtrrid |
|- ( ph -> -u _pi e. ran Q ) |
| 176 |
|
ffn |
|- ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) ) |
| 177 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
| 178 |
103 176 177
|
3syl |
|- ( ph -> ( -u _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) ) |
| 179 |
175 178
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = -u _pi ) |
| 180 |
169 179
|
r19.29a |
|- ( ph -> ( Q ` 0 ) = -u _pi ) |
| 181 |
68 64
|
sselii |
|- _pi e. H |
| 182 |
181 174
|
eleqtrrid |
|- ( ph -> _pi e. ran Q ) |
| 183 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
| 184 |
103 176 183
|
3syl |
|- ( ph -> ( _pi e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) ) |
| 185 |
182 184
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = _pi ) |
| 186 |
103 161
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 187 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
| 188 |
127 187
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
| 189 |
186 188
|
ffvelcdmd |
|- ( ph -> ( Q ` M ) e. ( -u _pi [,] _pi ) ) |
| 190 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ ( Q ` M ) e. ( -u _pi [,] _pi ) ) -> ( Q ` M ) <_ _pi ) |
| 191 |
147 148 189 190
|
syl3anc |
|- ( ph -> ( Q ` M ) <_ _pi ) |
| 192 |
191
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) <_ _pi ) |
| 193 |
|
id |
|- ( ( Q ` i ) = _pi -> ( Q ` i ) = _pi ) |
| 194 |
193
|
eqcomd |
|- ( ( Q ` i ) = _pi -> _pi = ( Q ` i ) ) |
| 195 |
194
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi = ( Q ` i ) ) |
| 196 |
112
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` i ) ) |
| 197 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
| 198 |
197
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) = ( Q ` M ) ) |
| 199 |
196 198
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 200 |
116
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i e. RR ) |
| 201 |
|
elfzel2 |
|- ( i e. ( 0 ... M ) -> M e. ZZ ) |
| 202 |
201
|
zred |
|- ( i e. ( 0 ... M ) -> M e. RR ) |
| 203 |
202
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M e. RR ) |
| 204 |
|
elfzle2 |
|- ( i e. ( 0 ... M ) -> i <_ M ) |
| 205 |
204
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i <_ M ) |
| 206 |
|
neqne |
|- ( -. i = M -> i =/= M ) |
| 207 |
206
|
necomd |
|- ( -. i = M -> M =/= i ) |
| 208 |
207
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> M =/= i ) |
| 209 |
200 203 205 208
|
leneltd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> i < M ) |
| 210 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) e. RR ) |
| 211 |
95 189
|
sselid |
|- ( ph -> ( Q ` M ) e. RR ) |
| 212 |
211
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` M ) e. RR ) |
| 213 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> i < M ) |
| 214 |
100
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 215 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
| 216 |
188
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( 0 ... M ) ) |
| 217 |
215 216
|
jca |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
| 218 |
217
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) |
| 219 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ M e. ( 0 ... M ) ) ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
| 220 |
214 218 219
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( i < M <-> ( Q ` i ) < ( Q ` M ) ) ) |
| 221 |
213 220
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) < ( Q ` M ) ) |
| 222 |
210 212 221
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 223 |
209 222
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ -. i = M ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 224 |
199 223
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 225 |
224
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` i ) <_ ( Q ` M ) ) |
| 226 |
195 225
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi <_ ( Q ` M ) ) |
| 227 |
211
|
3ad2ant1 |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) e. RR ) |
| 228 |
24
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> _pi e. RR ) |
| 229 |
227 228
|
letri3d |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( ( Q ` M ) = _pi <-> ( ( Q ` M ) <_ _pi /\ _pi <_ ( Q ` M ) ) ) ) |
| 230 |
192 226 229
|
mpbir2and |
|- ( ( ph /\ i e. ( 0 ... M ) /\ ( Q ` i ) = _pi ) -> ( Q ` M ) = _pi ) |
| 231 |
230
|
rexlimdv3a |
|- ( ph -> ( E. i e. ( 0 ... M ) ( Q ` i ) = _pi -> ( Q ` M ) = _pi ) ) |
| 232 |
185 231
|
mpd |
|- ( ph -> ( Q ` M ) = _pi ) |
| 233 |
|
elfzoelz |
|- ( i e. ( 0 ..^ M ) -> i e. ZZ ) |
| 234 |
233
|
zred |
|- ( i e. ( 0 ..^ M ) -> i e. RR ) |
| 235 |
234
|
ltp1d |
|- ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) |
| 236 |
235
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i < ( i + 1 ) ) |
| 237 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
| 238 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
| 239 |
237 238
|
jca |
|- ( i e. ( 0 ..^ M ) -> ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) |
| 240 |
|
isorel |
|- ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( i e. ( 0 ... M ) /\ ( i + 1 ) e. ( 0 ... M ) ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 241 |
100 239 240
|
syl2an |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i < ( i + 1 ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 242 |
236 241
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 243 |
242
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
| 244 |
180 232 243
|
jca31 |
|- ( ph -> ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
| 245 |
15
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 246 |
78 245
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = -u _pi /\ ( Q ` M ) = _pi ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
| 247 |
108 244 246
|
mpbir2and |
|- ( ph -> Q e. ( P ` M ) ) |
| 248 |
4
|
reseq1i |
|- ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
| 249 |
26
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
| 250 |
27
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
| 251 |
186
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
| 252 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
| 253 |
249 250 251 252
|
fourierdlem27 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi (,) _pi ) ) |
| 254 |
253
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 255 |
248 254
|
eqtr2id |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
| 256 |
6 15 78 247 17 174
|
fourierdlem38 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 257 |
255 256
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
| 258 |
255
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
| 259 |
6
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( dom G -cn-> CC ) ) |
| 260 |
7
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
| 261 |
8
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
| 262 |
100
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) ) |
| 263 |
262 101 102
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> H ) |
| 264 |
89
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E ` X ) e. RR ) |
| 265 |
262 172 173
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ran Q = H ) |
| 266 |
259 260 261 262 263 252 242 253 264 17 265
|
fourierdlem46 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) /\ ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) ) |
| 267 |
266
|
simpld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 268 |
258 267
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) =/= (/) ) |
| 269 |
255
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
| 270 |
266
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 271 |
269 270
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( RR _D F ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) =/= (/) ) |
| 272 |
91
|
tpid3 |
|- ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } |
| 273 |
|
elun1 |
|- ( ( E ` X ) e. { -u _pi , _pi , ( E ` X ) } -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) |
| 274 |
272 273
|
mp1i |
|- ( ph -> ( E ` X ) e. ( { -u _pi , _pi , ( E ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) |
| 275 |
274 17
|
eleqtrrdi |
|- ( ph -> ( E ` X ) e. H ) |
| 276 |
275 174
|
eleqtrrd |
|- ( ph -> ( E ` X ) e. ran Q ) |
| 277 |
1 2 3 9 10 11 15 78 247 257 268 271 12 13 14 16 276
|
fourierdlem113 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |