Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem115.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem115.t |
|- T = ( 2 x. _pi ) |
3 |
|
fourierdlem115.per |
|- ( ( ph /\ x e. RR ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
4 |
|
fourierdlem115.g |
|- G = ( ( RR _D F ) |` ( -u _pi (,) _pi ) ) |
5 |
|
fourierdlem115.dmdv |
|- ( ph -> ( ( -u _pi (,) _pi ) \ dom G ) e. Fin ) |
6 |
|
fourierdlem115.dvcn |
|- ( ph -> G e. ( dom G -cn-> CC ) ) |
7 |
|
fourierdlem115.rlim |
|- ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom G ) ) -> ( ( G |` ( x (,) +oo ) ) limCC x ) =/= (/) ) |
8 |
|
fourierdlem115.llim |
|- ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom G ) ) -> ( ( G |` ( -oo (,) x ) ) limCC x ) =/= (/) ) |
9 |
|
fourierdlem115.x |
|- ( ph -> X e. RR ) |
10 |
|
fourierdlem115.l |
|- ( ph -> L e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
11 |
|
fourierdlem115.r |
|- ( ph -> R e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
12 |
|
fourierdlem115.a |
|- A = ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
13 |
|
fourierdlem115.b |
|- B = ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
14 |
|
fourierdlem115.s |
|- S = ( k e. NN |-> ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
15 |
|
oveq1 |
|- ( n = k -> ( n x. x ) = ( k x. x ) ) |
16 |
15
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. x ) ) = ( cos ` ( k x. x ) ) ) |
17 |
16
|
oveq2d |
|- ( n = k -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) ) |
18 |
17
|
adantr |
|- ( ( n = k /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) = ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) ) |
19 |
18
|
itgeq2dv |
|- ( n = k -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x ) |
20 |
19
|
oveq1d |
|- ( n = k -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x / _pi ) ) |
21 |
20
|
cbvmptv |
|- ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) = ( k e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x / _pi ) ) |
22 |
12 21
|
eqtri |
|- A = ( k e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( k x. x ) ) ) _d x / _pi ) ) |
23 |
15
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. x ) ) = ( sin ` ( k x. x ) ) ) |
24 |
23
|
oveq2d |
|- ( n = k -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) ) |
25 |
24
|
adantr |
|- ( ( n = k /\ x e. ( -u _pi (,) _pi ) ) -> ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) = ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) ) |
26 |
25
|
itgeq2dv |
|- ( n = k -> S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x = S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x ) |
27 |
26
|
oveq1d |
|- ( n = k -> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) = ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x / _pi ) ) |
28 |
27
|
cbvmptv |
|- ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) = ( k e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x / _pi ) ) |
29 |
13 28
|
eqtri |
|- B = ( k e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( k x. x ) ) ) _d x / _pi ) ) |
30 |
|
eqid |
|- ( k e. NN |-> { w e. ( RR ^m ( 0 ... k ) ) | ( ( ( w ` 0 ) = -u _pi /\ ( w ` k ) = _pi ) /\ A. z e. ( 0 ..^ k ) ( w ` z ) < ( w ` ( z + 1 ) ) ) } ) = ( k e. NN |-> { w e. ( RR ^m ( 0 ... k ) ) | ( ( ( w ` 0 ) = -u _pi /\ ( w ` k ) = _pi ) /\ A. z e. ( 0 ..^ k ) ( w ` z ) < ( w ` ( z + 1 ) ) ) } ) |
31 |
|
id |
|- ( y = x -> y = x ) |
32 |
|
oveq2 |
|- ( y = x -> ( _pi - y ) = ( _pi - x ) ) |
33 |
32
|
oveq1d |
|- ( y = x -> ( ( _pi - y ) / T ) = ( ( _pi - x ) / T ) ) |
34 |
33
|
fveq2d |
|- ( y = x -> ( |_ ` ( ( _pi - y ) / T ) ) = ( |_ ` ( ( _pi - x ) / T ) ) ) |
35 |
34
|
oveq1d |
|- ( y = x -> ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) = ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) |
36 |
31 35
|
oveq12d |
|- ( y = x -> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) = ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
37 |
36
|
cbvmptv |
|- ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( _pi - x ) / T ) ) x. T ) ) ) |
38 |
|
eqid |
|- ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) = ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) |
39 |
|
eqid |
|- ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) = ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) |
40 |
|
isoeq1 |
|- ( g = f -> ( g Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) <-> f Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) ) |
41 |
40
|
cbviotavw |
|- ( iota g g Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) = ( iota f f Isom < , < ( ( 0 ... ( ( # ` ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) - 1 ) ) , ( { -u _pi , _pi , ( ( y e. RR |-> ( y + ( ( |_ ` ( ( _pi - y ) / T ) ) x. T ) ) ) ` X ) } u. ( ( -u _pi [,] _pi ) \ dom G ) ) ) ) |
42 |
1 2 3 4 5 6 7 8 9 10 11 22 29 14 30 37 38 39 41
|
fourierdlem114 |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ k e. NN ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |
43 |
42
|
simpld |
|- ( ph -> seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) ) |
44 |
|
nfcv |
|- F/_ k ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) |
45 |
|
nfmpt1 |
|- F/_ n ( n e. NN0 |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( cos ` ( n x. x ) ) ) _d x / _pi ) ) |
46 |
12 45
|
nfcxfr |
|- F/_ n A |
47 |
|
nfcv |
|- F/_ n k |
48 |
46 47
|
nffv |
|- F/_ n ( A ` k ) |
49 |
|
nfcv |
|- F/_ n x. |
50 |
|
nfcv |
|- F/_ n ( cos ` ( k x. X ) ) |
51 |
48 49 50
|
nfov |
|- F/_ n ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) |
52 |
|
nfcv |
|- F/_ n + |
53 |
|
nfmpt1 |
|- F/_ n ( n e. NN |-> ( S. ( -u _pi (,) _pi ) ( ( F ` x ) x. ( sin ` ( n x. x ) ) ) _d x / _pi ) ) |
54 |
13 53
|
nfcxfr |
|- F/_ n B |
55 |
54 47
|
nffv |
|- F/_ n ( B ` k ) |
56 |
|
nfcv |
|- F/_ n ( sin ` ( k x. X ) ) |
57 |
55 49 56
|
nfov |
|- F/_ n ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) |
58 |
51 52 57
|
nfov |
|- F/_ n ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
59 |
|
fveq2 |
|- ( n = k -> ( A ` n ) = ( A ` k ) ) |
60 |
|
oveq1 |
|- ( n = k -> ( n x. X ) = ( k x. X ) ) |
61 |
60
|
fveq2d |
|- ( n = k -> ( cos ` ( n x. X ) ) = ( cos ` ( k x. X ) ) ) |
62 |
59 61
|
oveq12d |
|- ( n = k -> ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) = ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) ) |
63 |
|
fveq2 |
|- ( n = k -> ( B ` n ) = ( B ` k ) ) |
64 |
60
|
fveq2d |
|- ( n = k -> ( sin ` ( n x. X ) ) = ( sin ` ( k x. X ) ) ) |
65 |
63 64
|
oveq12d |
|- ( n = k -> ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) = ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
66 |
62 65
|
oveq12d |
|- ( n = k -> ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
67 |
44 58 66
|
cbvsumi |
|- sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) = sum_ k e. NN ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) |
68 |
67
|
oveq2i |
|- ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( ( A ` 0 ) / 2 ) + sum_ k e. NN ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) |
69 |
42
|
simprd |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ k e. NN ( ( ( A ` k ) x. ( cos ` ( k x. X ) ) ) + ( ( B ` k ) x. ( sin ` ( k x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) |
70 |
68 69
|
eqtrid |
|- ( ph -> ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) |
71 |
43 70
|
jca |
|- ( ph -> ( seq 1 ( + , S ) ~~> ( ( ( L + R ) / 2 ) - ( ( A ` 0 ) / 2 ) ) /\ ( ( ( A ` 0 ) / 2 ) + sum_ n e. NN ( ( ( A ` n ) x. ( cos ` ( n x. X ) ) ) + ( ( B ` n ) x. ( sin ` ( n x. X ) ) ) ) ) = ( ( L + R ) / 2 ) ) ) |