| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem12.1 |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem12.2 |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | fourierdlem12.3 |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 4 |  | fourierdlem12.4 |  |-  ( ph -> X e. ran Q ) | 
						
							| 5 | 1 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 6 | 2 5 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 7 | 3 6 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 8 | 7 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 9 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 10 |  | ffn |  |-  ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) | 
						
							| 11 |  | fvelrnb |  |-  ( Q Fn ( 0 ... M ) -> ( X e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = X ) ) | 
						
							| 12 | 8 9 10 11 | 4syl |  |-  ( ph -> ( X e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = X ) ) | 
						
							| 13 | 4 12 | mpbid |  |-  ( ph -> E. j e. ( 0 ... M ) ( Q ` j ) = X ) | 
						
							| 14 | 13 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. j e. ( 0 ... M ) ( Q ` j ) = X ) | 
						
							| 15 | 8 9 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 17 |  | fzofzp1 |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 18 | 17 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) | 
						
							| 19 | 16 18 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ i < j ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 21 | 20 | 3ad2antl1 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) e. RR ) | 
						
							| 22 |  | frn |  |-  ( Q : ( 0 ... M ) --> RR -> ran Q C_ RR ) | 
						
							| 23 | 15 22 | syl |  |-  ( ph -> ran Q C_ RR ) | 
						
							| 24 | 23 4 | sseldd |  |-  ( ph -> X e. RR ) | 
						
							| 25 | 24 | ad2antrr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ i < j ) -> X e. RR ) | 
						
							| 26 | 25 | 3ad2antl1 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> X e. RR ) | 
						
							| 27 | 16 | ffvelcdmda |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) | 
						
							| 28 | 27 | 3adant3 |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) e. RR ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` j ) e. RR ) | 
						
							| 30 |  | simpr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i < j ) | 
						
							| 31 |  | elfzoelz |  |-  ( i e. ( 0 ..^ M ) -> i e. ZZ ) | 
						
							| 32 | 31 | ad2antrr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i e. ZZ ) | 
						
							| 33 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 34 | 33 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ZZ ) | 
						
							| 35 |  | zltp1le |  |-  ( ( i e. ZZ /\ j e. ZZ ) -> ( i < j <-> ( i + 1 ) <_ j ) ) | 
						
							| 36 | 32 34 35 | syl2anc |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i < j <-> ( i + 1 ) <_ j ) ) | 
						
							| 37 | 30 36 | mpbid |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i + 1 ) <_ j ) | 
						
							| 38 | 32 | peano2zd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i + 1 ) e. ZZ ) | 
						
							| 39 |  | eluz |  |-  ( ( ( i + 1 ) e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` ( i + 1 ) ) <-> ( i + 1 ) <_ j ) ) | 
						
							| 40 | 38 34 39 | syl2anc |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( j e. ( ZZ>= ` ( i + 1 ) ) <-> ( i + 1 ) <_ j ) ) | 
						
							| 41 | 37 40 | mpbird |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 42 | 41 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( ZZ>= ` ( i + 1 ) ) ) | 
						
							| 43 | 16 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 44 |  | 0zd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 e. ZZ ) | 
						
							| 45 |  | elfzel2 |  |-  ( j e. ( 0 ... M ) -> M e. ZZ ) | 
						
							| 46 | 45 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> M e. ZZ ) | 
						
							| 47 |  | elfzelz |  |-  ( w e. ( ( i + 1 ) ... j ) -> w e. ZZ ) | 
						
							| 48 | 47 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ZZ ) | 
						
							| 49 |  | 0red |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 e. RR ) | 
						
							| 50 | 47 | zred |  |-  ( w e. ( ( i + 1 ) ... j ) -> w e. RR ) | 
						
							| 51 | 50 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. RR ) | 
						
							| 52 | 31 | peano2zd |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ZZ ) | 
						
							| 53 | 52 | zred |  |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. RR ) | 
						
							| 54 | 53 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( i + 1 ) e. RR ) | 
						
							| 55 | 31 | zred |  |-  ( i e. ( 0 ..^ M ) -> i e. RR ) | 
						
							| 56 | 55 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> i e. RR ) | 
						
							| 57 |  | elfzole1 |  |-  ( i e. ( 0 ..^ M ) -> 0 <_ i ) | 
						
							| 58 | 57 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ i ) | 
						
							| 59 | 56 | ltp1d |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> i < ( i + 1 ) ) | 
						
							| 60 | 49 56 54 58 59 | lelttrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 < ( i + 1 ) ) | 
						
							| 61 |  | elfzle1 |  |-  ( w e. ( ( i + 1 ) ... j ) -> ( i + 1 ) <_ w ) | 
						
							| 62 | 61 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( i + 1 ) <_ w ) | 
						
							| 63 | 49 54 51 60 62 | ltletrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 < w ) | 
						
							| 64 | 49 51 63 | ltled |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ w ) | 
						
							| 65 | 64 | adantlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ w ) | 
						
							| 66 | 50 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. RR ) | 
						
							| 67 | 33 | zred |  |-  ( j e. ( 0 ... M ) -> j e. RR ) | 
						
							| 68 | 67 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> j e. RR ) | 
						
							| 69 | 45 | zred |  |-  ( j e. ( 0 ... M ) -> M e. RR ) | 
						
							| 70 | 69 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> M e. RR ) | 
						
							| 71 |  | elfzle2 |  |-  ( w e. ( ( i + 1 ) ... j ) -> w <_ j ) | 
						
							| 72 | 71 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ j ) | 
						
							| 73 |  | elfzle2 |  |-  ( j e. ( 0 ... M ) -> j <_ M ) | 
						
							| 74 | 73 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> j <_ M ) | 
						
							| 75 | 66 68 70 72 74 | letrd |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ M ) | 
						
							| 76 | 75 | adantll |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ M ) | 
						
							| 77 | 44 46 48 65 76 | elfzd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ( 0 ... M ) ) | 
						
							| 78 | 77 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ( 0 ... M ) ) | 
						
							| 79 | 43 78 | ffvelcdmd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( Q ` w ) e. RR ) | 
						
							| 80 | 79 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( Q ` w ) e. RR ) | 
						
							| 81 |  | simp-4l |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ph ) | 
						
							| 82 |  | 0red |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. RR ) | 
						
							| 83 |  | elfzelz |  |-  ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w e. ZZ ) | 
						
							| 84 | 83 | zred |  |-  ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w e. RR ) | 
						
							| 85 | 84 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) | 
						
							| 86 |  | 0red |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. RR ) | 
						
							| 87 | 53 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( i + 1 ) e. RR ) | 
						
							| 88 | 84 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) | 
						
							| 89 |  | 0red |  |-  ( i e. ( 0 ..^ M ) -> 0 e. RR ) | 
						
							| 90 | 55 | ltp1d |  |-  ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) | 
						
							| 91 | 89 55 53 57 90 | lelttrd |  |-  ( i e. ( 0 ..^ M ) -> 0 < ( i + 1 ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < ( i + 1 ) ) | 
						
							| 93 |  | elfzle1 |  |-  ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> ( i + 1 ) <_ w ) | 
						
							| 94 | 93 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( i + 1 ) <_ w ) | 
						
							| 95 | 86 87 88 92 94 | ltletrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < w ) | 
						
							| 96 | 95 | adantlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < w ) | 
						
							| 97 | 82 85 96 | ltled |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) | 
						
							| 98 | 97 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) | 
						
							| 99 | 98 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) | 
						
							| 100 | 84 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) | 
						
							| 101 |  | peano2rem |  |-  ( j e. RR -> ( j - 1 ) e. RR ) | 
						
							| 102 | 67 101 | syl |  |-  ( j e. ( 0 ... M ) -> ( j - 1 ) e. RR ) | 
						
							| 103 | 102 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( j - 1 ) e. RR ) | 
						
							| 104 | 69 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> M e. RR ) | 
						
							| 105 |  | elfzle2 |  |-  ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w <_ ( j - 1 ) ) | 
						
							| 106 | 105 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w <_ ( j - 1 ) ) | 
						
							| 107 |  | zlem1lt |  |-  ( ( j e. ZZ /\ M e. ZZ ) -> ( j <_ M <-> ( j - 1 ) < M ) ) | 
						
							| 108 | 33 45 107 | syl2anc |  |-  ( j e. ( 0 ... M ) -> ( j <_ M <-> ( j - 1 ) < M ) ) | 
						
							| 109 | 73 108 | mpbid |  |-  ( j e. ( 0 ... M ) -> ( j - 1 ) < M ) | 
						
							| 110 | 109 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( j - 1 ) < M ) | 
						
							| 111 | 100 103 104 106 110 | lelttrd |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) | 
						
							| 112 | 111 | adantlr |  |-  ( ( ( j e. ( 0 ... M ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) | 
						
							| 113 | 112 | adantlll |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) | 
						
							| 114 | 83 | adantl |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. ZZ ) | 
						
							| 115 |  | 0zd |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. ZZ ) | 
						
							| 116 | 45 | ad3antlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> M e. ZZ ) | 
						
							| 117 |  | elfzo |  |-  ( ( w e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) | 
						
							| 118 | 114 115 116 117 | syl3anc |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) | 
						
							| 119 | 99 113 118 | mpbir2and |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. ( 0 ..^ M ) ) | 
						
							| 120 | 15 | adantr |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 121 |  | elfzofz |  |-  ( w e. ( 0 ..^ M ) -> w e. ( 0 ... M ) ) | 
						
							| 122 | 121 | adantl |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> w e. ( 0 ... M ) ) | 
						
							| 123 | 120 122 | ffvelcdmd |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) e. RR ) | 
						
							| 124 |  | fzofzp1 |  |-  ( w e. ( 0 ..^ M ) -> ( w + 1 ) e. ( 0 ... M ) ) | 
						
							| 125 | 124 | adantl |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( w + 1 ) e. ( 0 ... M ) ) | 
						
							| 126 | 120 125 | ffvelcdmd |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` ( w + 1 ) ) e. RR ) | 
						
							| 127 |  | eleq1w |  |-  ( i = w -> ( i e. ( 0 ..^ M ) <-> w e. ( 0 ..^ M ) ) ) | 
						
							| 128 | 127 | anbi2d |  |-  ( i = w -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ w e. ( 0 ..^ M ) ) ) ) | 
						
							| 129 |  | fveq2 |  |-  ( i = w -> ( Q ` i ) = ( Q ` w ) ) | 
						
							| 130 |  | oveq1 |  |-  ( i = w -> ( i + 1 ) = ( w + 1 ) ) | 
						
							| 131 | 130 | fveq2d |  |-  ( i = w -> ( Q ` ( i + 1 ) ) = ( Q ` ( w + 1 ) ) ) | 
						
							| 132 | 129 131 | breq12d |  |-  ( i = w -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) ) | 
						
							| 133 | 128 132 | imbi12d |  |-  ( i = w -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) ) ) | 
						
							| 134 | 7 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 135 | 134 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 136 | 133 135 | chvarvv |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) | 
						
							| 137 | 123 126 136 | ltled |  |-  ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) | 
						
							| 138 | 81 119 137 | syl2anc |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) | 
						
							| 139 | 42 80 138 | monoord |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` j ) ) | 
						
							| 140 | 139 | 3adantl3 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` j ) ) | 
						
							| 141 | 15 | ffvelcdmda |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) | 
						
							| 142 | 141 | 3adant3 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) e. RR ) | 
						
							| 143 |  | simp3 |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) = X ) | 
						
							| 144 | 142 143 | eqled |  |-  ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) <_ X ) | 
						
							| 145 | 144 | 3adant1r |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) <_ X ) | 
						
							| 146 | 145 | adantr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` j ) <_ X ) | 
						
							| 147 | 21 29 26 140 146 | letrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ X ) | 
						
							| 148 | 21 26 147 | lensymd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> -. X < ( Q ` ( i + 1 ) ) ) | 
						
							| 149 | 148 | intnand |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 150 | 67 | ad2antlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> j e. RR ) | 
						
							| 151 | 55 | ad3antlr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> i e. RR ) | 
						
							| 152 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> -. i < j ) | 
						
							| 153 | 150 151 152 | nltled |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> j <_ i ) | 
						
							| 154 | 153 | 3adantl3 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> j <_ i ) | 
						
							| 155 |  | eqcom |  |-  ( ( Q ` j ) = X <-> X = ( Q ` j ) ) | 
						
							| 156 | 155 | biimpi |  |-  ( ( Q ` j ) = X -> X = ( Q ` j ) ) | 
						
							| 157 | 156 | adantr |  |-  ( ( ( Q ` j ) = X /\ j <_ i ) -> X = ( Q ` j ) ) | 
						
							| 158 | 157 | 3ad2antl3 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> X = ( Q ` j ) ) | 
						
							| 159 | 33 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> j e. ZZ ) | 
						
							| 160 | 31 | ad2antrr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ZZ ) | 
						
							| 161 |  | simpr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> j <_ i ) | 
						
							| 162 |  | eluz2 |  |-  ( i e. ( ZZ>= ` j ) <-> ( j e. ZZ /\ i e. ZZ /\ j <_ i ) ) | 
						
							| 163 | 159 160 161 162 | syl3anbrc |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ( ZZ>= ` j ) ) | 
						
							| 164 | 163 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ( ZZ>= ` j ) ) | 
						
							| 165 | 16 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 166 |  | 0zd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> 0 e. ZZ ) | 
						
							| 167 | 45 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> M e. ZZ ) | 
						
							| 168 |  | elfzelz |  |-  ( w e. ( j ... i ) -> w e. ZZ ) | 
						
							| 169 | 168 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w e. ZZ ) | 
						
							| 170 | 166 167 169 | 3jca |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) ) | 
						
							| 171 |  | 0red |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 e. RR ) | 
						
							| 172 | 67 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> j e. RR ) | 
						
							| 173 | 168 | zred |  |-  ( w e. ( j ... i ) -> w e. RR ) | 
						
							| 174 | 173 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> w e. RR ) | 
						
							| 175 |  | elfzle1 |  |-  ( j e. ( 0 ... M ) -> 0 <_ j ) | 
						
							| 176 | 175 | adantr |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 <_ j ) | 
						
							| 177 |  | elfzle1 |  |-  ( w e. ( j ... i ) -> j <_ w ) | 
						
							| 178 | 177 | adantl |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> j <_ w ) | 
						
							| 179 | 171 172 174 176 178 | letrd |  |-  ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 <_ w ) | 
						
							| 180 | 179 | adantll |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> 0 <_ w ) | 
						
							| 181 | 173 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w e. RR ) | 
						
							| 182 |  | elfzoel2 |  |-  ( i e. ( 0 ..^ M ) -> M e. ZZ ) | 
						
							| 183 | 182 | zred |  |-  ( i e. ( 0 ..^ M ) -> M e. RR ) | 
						
							| 184 | 183 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> M e. RR ) | 
						
							| 185 | 55 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> i e. RR ) | 
						
							| 186 |  | elfzle2 |  |-  ( w e. ( j ... i ) -> w <_ i ) | 
						
							| 187 | 186 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w <_ i ) | 
						
							| 188 |  | elfzolt2 |  |-  ( i e. ( 0 ..^ M ) -> i < M ) | 
						
							| 189 | 188 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> i < M ) | 
						
							| 190 | 181 185 184 187 189 | lelttrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w < M ) | 
						
							| 191 | 181 184 190 | ltled |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w <_ M ) | 
						
							| 192 | 191 | adantlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w <_ M ) | 
						
							| 193 | 170 180 192 | jca32 |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) | 
						
							| 194 | 193 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) | 
						
							| 195 |  | elfz2 |  |-  ( w e. ( 0 ... M ) <-> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) | 
						
							| 196 | 194 195 | sylibr |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w e. ( 0 ... M ) ) | 
						
							| 197 | 165 196 | ffvelcdmd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( Q ` w ) e. RR ) | 
						
							| 198 | 197 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) /\ w e. ( j ... i ) ) -> ( Q ` w ) e. RR ) | 
						
							| 199 |  | simplll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ph ) | 
						
							| 200 |  | 0red |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 e. RR ) | 
						
							| 201 | 67 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> j e. RR ) | 
						
							| 202 |  | elfzelz |  |-  ( w e. ( j ... ( i - 1 ) ) -> w e. ZZ ) | 
						
							| 203 | 202 | zred |  |-  ( w e. ( j ... ( i - 1 ) ) -> w e. RR ) | 
						
							| 204 | 203 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. RR ) | 
						
							| 205 | 175 | ad2antlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 <_ j ) | 
						
							| 206 |  | elfzle1 |  |-  ( w e. ( j ... ( i - 1 ) ) -> j <_ w ) | 
						
							| 207 | 206 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> j <_ w ) | 
						
							| 208 | 200 201 204 205 207 | letrd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 <_ w ) | 
						
							| 209 | 203 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. RR ) | 
						
							| 210 | 55 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> i e. RR ) | 
						
							| 211 | 183 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> M e. RR ) | 
						
							| 212 |  | peano2rem |  |-  ( i e. RR -> ( i - 1 ) e. RR ) | 
						
							| 213 | 210 212 | syl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( i - 1 ) e. RR ) | 
						
							| 214 |  | elfzle2 |  |-  ( w e. ( j ... ( i - 1 ) ) -> w <_ ( i - 1 ) ) | 
						
							| 215 | 214 | adantl |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w <_ ( i - 1 ) ) | 
						
							| 216 | 210 | ltm1d |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( i - 1 ) < i ) | 
						
							| 217 | 209 213 210 215 216 | lelttrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < i ) | 
						
							| 218 | 188 | adantr |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> i < M ) | 
						
							| 219 | 209 210 211 217 218 | lttrd |  |-  ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < M ) | 
						
							| 220 | 219 | adantlr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < M ) | 
						
							| 221 | 202 | adantl |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ZZ ) | 
						
							| 222 |  | 0zd |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 e. ZZ ) | 
						
							| 223 | 182 | ad2antrr |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> M e. ZZ ) | 
						
							| 224 | 221 222 223 117 | syl3anc |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) | 
						
							| 225 | 208 220 224 | mpbir2and |  |-  ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ( 0 ..^ M ) ) | 
						
							| 226 | 225 | adantlll |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ( 0 ..^ M ) ) | 
						
							| 227 | 199 226 137 | syl2anc |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) | 
						
							| 228 | 227 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) | 
						
							| 229 | 164 198 228 | monoord |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> ( Q ` j ) <_ ( Q ` i ) ) | 
						
							| 230 | 229 | 3adantl3 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> ( Q ` j ) <_ ( Q ` i ) ) | 
						
							| 231 | 158 230 | eqbrtrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> X <_ ( Q ` i ) ) | 
						
							| 232 | 24 | adantr |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) | 
						
							| 233 |  | elfzofz |  |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) | 
						
							| 234 | 233 | adantl |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) | 
						
							| 235 | 16 234 | ffvelcdmd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 236 | 232 235 | lenltd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) | 
						
							| 237 | 236 | adantr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j <_ i ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) | 
						
							| 238 | 237 | 3ad2antl1 |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) | 
						
							| 239 | 231 238 | mpbid |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> -. ( Q ` i ) < X ) | 
						
							| 240 | 154 239 | syldan |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> -. ( Q ` i ) < X ) | 
						
							| 241 | 240 | intnanrd |  |-  ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 242 | 149 241 | pm2.61dan |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 243 | 242 | intnand |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 244 |  | elioo3g |  |-  ( X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 245 | 243 244 | sylnibr |  |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) | 
						
							| 246 | 245 | rexlimdv3a |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = X -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 247 | 14 246 | mpd |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |