Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem12.1 |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
2 |
|
fourierdlem12.2 |
|- ( ph -> M e. NN ) |
3 |
|
fourierdlem12.3 |
|- ( ph -> Q e. ( P ` M ) ) |
4 |
|
fourierdlem12.4 |
|- ( ph -> X e. ran Q ) |
5 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
6 |
2 5
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
7 |
3 6
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
8 |
7
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
9 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
10 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
11 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( X e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = X ) ) |
12 |
8 9 10 11
|
4syl |
|- ( ph -> ( X e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = X ) ) |
13 |
4 12
|
mpbid |
|- ( ph -> E. j e. ( 0 ... M ) ( Q ` j ) = X ) |
14 |
13
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. j e. ( 0 ... M ) ( Q ` j ) = X ) |
15 |
8 9
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
16 |
15
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
17 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
19 |
16 18
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
20 |
19
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ i < j ) -> ( Q ` ( i + 1 ) ) e. RR ) |
21 |
20
|
3ad2antl1 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) e. RR ) |
22 |
|
frn |
|- ( Q : ( 0 ... M ) --> RR -> ran Q C_ RR ) |
23 |
15 22
|
syl |
|- ( ph -> ran Q C_ RR ) |
24 |
23 4
|
sseldd |
|- ( ph -> X e. RR ) |
25 |
24
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ i < j ) -> X e. RR ) |
26 |
25
|
3ad2antl1 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> X e. RR ) |
27 |
16
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
28 |
27
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) e. RR ) |
29 |
28
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` j ) e. RR ) |
30 |
|
simpr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i < j ) |
31 |
|
elfzoelz |
|- ( i e. ( 0 ..^ M ) -> i e. ZZ ) |
32 |
31
|
ad2antrr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i e. ZZ ) |
33 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
34 |
33
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ZZ ) |
35 |
|
zltp1le |
|- ( ( i e. ZZ /\ j e. ZZ ) -> ( i < j <-> ( i + 1 ) <_ j ) ) |
36 |
32 34 35
|
syl2anc |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i < j <-> ( i + 1 ) <_ j ) ) |
37 |
30 36
|
mpbid |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i + 1 ) <_ j ) |
38 |
32
|
peano2zd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( i + 1 ) e. ZZ ) |
39 |
|
eluz |
|- ( ( ( i + 1 ) e. ZZ /\ j e. ZZ ) -> ( j e. ( ZZ>= ` ( i + 1 ) ) <-> ( i + 1 ) <_ j ) ) |
40 |
38 34 39
|
syl2anc |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( j e. ( ZZ>= ` ( i + 1 ) ) <-> ( i + 1 ) <_ j ) ) |
41 |
37 40
|
mpbird |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( ZZ>= ` ( i + 1 ) ) ) |
42 |
41
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( ZZ>= ` ( i + 1 ) ) ) |
43 |
16
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> Q : ( 0 ... M ) --> RR ) |
44 |
|
0zd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 e. ZZ ) |
45 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
46 |
45
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> M e. ZZ ) |
47 |
|
elfzelz |
|- ( w e. ( ( i + 1 ) ... j ) -> w e. ZZ ) |
48 |
47
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ZZ ) |
49 |
|
0red |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 e. RR ) |
50 |
47
|
zred |
|- ( w e. ( ( i + 1 ) ... j ) -> w e. RR ) |
51 |
50
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. RR ) |
52 |
31
|
peano2zd |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ZZ ) |
53 |
52
|
zred |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. RR ) |
54 |
53
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( i + 1 ) e. RR ) |
55 |
31
|
zred |
|- ( i e. ( 0 ..^ M ) -> i e. RR ) |
56 |
55
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> i e. RR ) |
57 |
|
elfzole1 |
|- ( i e. ( 0 ..^ M ) -> 0 <_ i ) |
58 |
57
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ i ) |
59 |
56
|
ltp1d |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> i < ( i + 1 ) ) |
60 |
49 56 54 58 59
|
lelttrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 < ( i + 1 ) ) |
61 |
|
elfzle1 |
|- ( w e. ( ( i + 1 ) ... j ) -> ( i + 1 ) <_ w ) |
62 |
61
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( i + 1 ) <_ w ) |
63 |
49 54 51 60 62
|
ltletrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 < w ) |
64 |
49 51 63
|
ltled |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ w ) |
65 |
64
|
adantlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> 0 <_ w ) |
66 |
50
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. RR ) |
67 |
33
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
68 |
67
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> j e. RR ) |
69 |
45
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
70 |
69
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> M e. RR ) |
71 |
|
elfzle2 |
|- ( w e. ( ( i + 1 ) ... j ) -> w <_ j ) |
72 |
71
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ j ) |
73 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
74 |
73
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> j <_ M ) |
75 |
66 68 70 72 74
|
letrd |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ M ) |
76 |
75
|
adantll |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w <_ M ) |
77 |
44 46 48 65 76
|
elfzd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ( 0 ... M ) ) |
78 |
77
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> w e. ( 0 ... M ) ) |
79 |
43 78
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( Q ` w ) e. RR ) |
80 |
79
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... j ) ) -> ( Q ` w ) e. RR ) |
81 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ph ) |
82 |
|
0red |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. RR ) |
83 |
|
elfzelz |
|- ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w e. ZZ ) |
84 |
83
|
zred |
|- ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w e. RR ) |
85 |
84
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) |
86 |
|
0red |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. RR ) |
87 |
53
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( i + 1 ) e. RR ) |
88 |
84
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) |
89 |
|
0red |
|- ( i e. ( 0 ..^ M ) -> 0 e. RR ) |
90 |
55
|
ltp1d |
|- ( i e. ( 0 ..^ M ) -> i < ( i + 1 ) ) |
91 |
89 55 53 57 90
|
lelttrd |
|- ( i e. ( 0 ..^ M ) -> 0 < ( i + 1 ) ) |
92 |
91
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < ( i + 1 ) ) |
93 |
|
elfzle1 |
|- ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> ( i + 1 ) <_ w ) |
94 |
93
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( i + 1 ) <_ w ) |
95 |
86 87 88 92 94
|
ltletrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < w ) |
96 |
95
|
adantlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 < w ) |
97 |
82 85 96
|
ltled |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) |
98 |
97
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) |
99 |
98
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 <_ w ) |
100 |
84
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. RR ) |
101 |
|
peano2rem |
|- ( j e. RR -> ( j - 1 ) e. RR ) |
102 |
67 101
|
syl |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. RR ) |
103 |
102
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( j - 1 ) e. RR ) |
104 |
69
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> M e. RR ) |
105 |
|
elfzle2 |
|- ( w e. ( ( i + 1 ) ... ( j - 1 ) ) -> w <_ ( j - 1 ) ) |
106 |
105
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w <_ ( j - 1 ) ) |
107 |
|
zlem1lt |
|- ( ( j e. ZZ /\ M e. ZZ ) -> ( j <_ M <-> ( j - 1 ) < M ) ) |
108 |
33 45 107
|
syl2anc |
|- ( j e. ( 0 ... M ) -> ( j <_ M <-> ( j - 1 ) < M ) ) |
109 |
73 108
|
mpbid |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < M ) |
110 |
109
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( j - 1 ) < M ) |
111 |
100 103 104 106 110
|
lelttrd |
|- ( ( j e. ( 0 ... M ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) |
112 |
111
|
adantlr |
|- ( ( ( j e. ( 0 ... M ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) |
113 |
112
|
adantlll |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w < M ) |
114 |
83
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. ZZ ) |
115 |
|
0zd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> 0 e. ZZ ) |
116 |
45
|
ad3antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> M e. ZZ ) |
117 |
|
elfzo |
|- ( ( w e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) |
118 |
114 115 116 117
|
syl3anc |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) |
119 |
99 113 118
|
mpbir2and |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> w e. ( 0 ..^ M ) ) |
120 |
15
|
adantr |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
121 |
|
elfzofz |
|- ( w e. ( 0 ..^ M ) -> w e. ( 0 ... M ) ) |
122 |
121
|
adantl |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> w e. ( 0 ... M ) ) |
123 |
120 122
|
ffvelcdmd |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) e. RR ) |
124 |
|
fzofzp1 |
|- ( w e. ( 0 ..^ M ) -> ( w + 1 ) e. ( 0 ... M ) ) |
125 |
124
|
adantl |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( w + 1 ) e. ( 0 ... M ) ) |
126 |
120 125
|
ffvelcdmd |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` ( w + 1 ) ) e. RR ) |
127 |
|
eleq1w |
|- ( i = w -> ( i e. ( 0 ..^ M ) <-> w e. ( 0 ..^ M ) ) ) |
128 |
127
|
anbi2d |
|- ( i = w -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ w e. ( 0 ..^ M ) ) ) ) |
129 |
|
fveq2 |
|- ( i = w -> ( Q ` i ) = ( Q ` w ) ) |
130 |
|
oveq1 |
|- ( i = w -> ( i + 1 ) = ( w + 1 ) ) |
131 |
130
|
fveq2d |
|- ( i = w -> ( Q ` ( i + 1 ) ) = ( Q ` ( w + 1 ) ) ) |
132 |
129 131
|
breq12d |
|- ( i = w -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) ) |
133 |
128 132
|
imbi12d |
|- ( i = w -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) ) ) |
134 |
7
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
135 |
134
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
136 |
133 135
|
chvarvv |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) < ( Q ` ( w + 1 ) ) ) |
137 |
123 126 136
|
ltled |
|- ( ( ph /\ w e. ( 0 ..^ M ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) |
138 |
81 119 137
|
syl2anc |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ w e. ( ( i + 1 ) ... ( j - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) |
139 |
42 80 138
|
monoord |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` j ) ) |
140 |
139
|
3adantl3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` j ) ) |
141 |
15
|
ffvelcdmda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
142 |
141
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) e. RR ) |
143 |
|
simp3 |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) = X ) |
144 |
142 143
|
eqled |
|- ( ( ph /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) <_ X ) |
145 |
144
|
3adant1r |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> ( Q ` j ) <_ X ) |
146 |
145
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` j ) <_ X ) |
147 |
21 29 26 140 146
|
letrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> ( Q ` ( i + 1 ) ) <_ X ) |
148 |
21 26 147
|
lensymd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> -. X < ( Q ` ( i + 1 ) ) ) |
149 |
148
|
intnand |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ i < j ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) |
150 |
67
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> j e. RR ) |
151 |
55
|
ad3antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> i e. RR ) |
152 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> -. i < j ) |
153 |
150 151 152
|
nltled |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ -. i < j ) -> j <_ i ) |
154 |
153
|
3adantl3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> j <_ i ) |
155 |
|
eqcom |
|- ( ( Q ` j ) = X <-> X = ( Q ` j ) ) |
156 |
155
|
biimpi |
|- ( ( Q ` j ) = X -> X = ( Q ` j ) ) |
157 |
156
|
adantr |
|- ( ( ( Q ` j ) = X /\ j <_ i ) -> X = ( Q ` j ) ) |
158 |
157
|
3ad2antl3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> X = ( Q ` j ) ) |
159 |
33
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> j e. ZZ ) |
160 |
31
|
ad2antrr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ZZ ) |
161 |
|
simpr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> j <_ i ) |
162 |
|
eluz2 |
|- ( i e. ( ZZ>= ` j ) <-> ( j e. ZZ /\ i e. ZZ /\ j <_ i ) ) |
163 |
159 160 161 162
|
syl3anbrc |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ( ZZ>= ` j ) ) |
164 |
163
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> i e. ( ZZ>= ` j ) ) |
165 |
16
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> Q : ( 0 ... M ) --> RR ) |
166 |
|
0zd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> 0 e. ZZ ) |
167 |
45
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> M e. ZZ ) |
168 |
|
elfzelz |
|- ( w e. ( j ... i ) -> w e. ZZ ) |
169 |
168
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w e. ZZ ) |
170 |
166 167 169
|
3jca |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) ) |
171 |
|
0red |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 e. RR ) |
172 |
67
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> j e. RR ) |
173 |
168
|
zred |
|- ( w e. ( j ... i ) -> w e. RR ) |
174 |
173
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> w e. RR ) |
175 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
176 |
175
|
adantr |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 <_ j ) |
177 |
|
elfzle1 |
|- ( w e. ( j ... i ) -> j <_ w ) |
178 |
177
|
adantl |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> j <_ w ) |
179 |
171 172 174 176 178
|
letrd |
|- ( ( j e. ( 0 ... M ) /\ w e. ( j ... i ) ) -> 0 <_ w ) |
180 |
179
|
adantll |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> 0 <_ w ) |
181 |
173
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w e. RR ) |
182 |
|
elfzoel2 |
|- ( i e. ( 0 ..^ M ) -> M e. ZZ ) |
183 |
182
|
zred |
|- ( i e. ( 0 ..^ M ) -> M e. RR ) |
184 |
183
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> M e. RR ) |
185 |
55
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> i e. RR ) |
186 |
|
elfzle2 |
|- ( w e. ( j ... i ) -> w <_ i ) |
187 |
186
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w <_ i ) |
188 |
|
elfzolt2 |
|- ( i e. ( 0 ..^ M ) -> i < M ) |
189 |
188
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> i < M ) |
190 |
181 185 184 187 189
|
lelttrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w < M ) |
191 |
181 184 190
|
ltled |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... i ) ) -> w <_ M ) |
192 |
191
|
adantlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w <_ M ) |
193 |
170 180 192
|
jca32 |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) |
194 |
193
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) |
195 |
|
elfz2 |
|- ( w e. ( 0 ... M ) <-> ( ( 0 e. ZZ /\ M e. ZZ /\ w e. ZZ ) /\ ( 0 <_ w /\ w <_ M ) ) ) |
196 |
194 195
|
sylibr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> w e. ( 0 ... M ) ) |
197 |
165 196
|
ffvelcdmd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... i ) ) -> ( Q ` w ) e. RR ) |
198 |
197
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) /\ w e. ( j ... i ) ) -> ( Q ` w ) e. RR ) |
199 |
|
simplll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ph ) |
200 |
|
0red |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 e. RR ) |
201 |
67
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> j e. RR ) |
202 |
|
elfzelz |
|- ( w e. ( j ... ( i - 1 ) ) -> w e. ZZ ) |
203 |
202
|
zred |
|- ( w e. ( j ... ( i - 1 ) ) -> w e. RR ) |
204 |
203
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. RR ) |
205 |
175
|
ad2antlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 <_ j ) |
206 |
|
elfzle1 |
|- ( w e. ( j ... ( i - 1 ) ) -> j <_ w ) |
207 |
206
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> j <_ w ) |
208 |
200 201 204 205 207
|
letrd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 <_ w ) |
209 |
203
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. RR ) |
210 |
55
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> i e. RR ) |
211 |
183
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> M e. RR ) |
212 |
|
peano2rem |
|- ( i e. RR -> ( i - 1 ) e. RR ) |
213 |
210 212
|
syl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( i - 1 ) e. RR ) |
214 |
|
elfzle2 |
|- ( w e. ( j ... ( i - 1 ) ) -> w <_ ( i - 1 ) ) |
215 |
214
|
adantl |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w <_ ( i - 1 ) ) |
216 |
210
|
ltm1d |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( i - 1 ) < i ) |
217 |
209 213 210 215 216
|
lelttrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < i ) |
218 |
188
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> i < M ) |
219 |
209 210 211 217 218
|
lttrd |
|- ( ( i e. ( 0 ..^ M ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < M ) |
220 |
219
|
adantlr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w < M ) |
221 |
202
|
adantl |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ZZ ) |
222 |
|
0zd |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> 0 e. ZZ ) |
223 |
182
|
ad2antrr |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> M e. ZZ ) |
224 |
221 222 223 117
|
syl3anc |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( w e. ( 0 ..^ M ) <-> ( 0 <_ w /\ w < M ) ) ) |
225 |
208 220 224
|
mpbir2and |
|- ( ( ( i e. ( 0 ..^ M ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ( 0 ..^ M ) ) |
226 |
225
|
adantlll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> w e. ( 0 ..^ M ) ) |
227 |
199 226 137
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) |
228 |
227
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) /\ w e. ( j ... ( i - 1 ) ) ) -> ( Q ` w ) <_ ( Q ` ( w + 1 ) ) ) |
229 |
164 198 228
|
monoord |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) ) /\ j <_ i ) -> ( Q ` j ) <_ ( Q ` i ) ) |
230 |
229
|
3adantl3 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> ( Q ` j ) <_ ( Q ` i ) ) |
231 |
158 230
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> X <_ ( Q ` i ) ) |
232 |
24
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
233 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
234 |
233
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
235 |
16 234
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
236 |
232 235
|
lenltd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) |
237 |
236
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j <_ i ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) |
238 |
237
|
3ad2antl1 |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> ( X <_ ( Q ` i ) <-> -. ( Q ` i ) < X ) ) |
239 |
231 238
|
mpbid |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ j <_ i ) -> -. ( Q ` i ) < X ) |
240 |
154 239
|
syldan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> -. ( Q ` i ) < X ) |
241 |
240
|
intnanrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) /\ -. i < j ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) |
242 |
149 241
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) |
243 |
242
|
intnand |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) ) |
244 |
|
elioo3g |
|- ( X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ X e. RR* ) /\ ( ( Q ` i ) < X /\ X < ( Q ` ( i + 1 ) ) ) ) ) |
245 |
243 244
|
sylnibr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j e. ( 0 ... M ) /\ ( Q ` j ) = X ) -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
246 |
245
|
rexlimdv3a |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = X -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
247 |
14 246
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. X e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |