Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem13.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem13.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem13.x |
|- ( ph -> X e. RR ) |
4 |
|
fourierdlem13.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + X ) /\ ( p ` m ) = ( B + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
5 |
|
fourierdlem13.m |
|- ( ph -> M e. NN ) |
6 |
|
fourierdlem13.v |
|- ( ph -> V e. ( P ` M ) ) |
7 |
|
fourierdlem13.i |
|- ( ph -> I e. ( 0 ... M ) ) |
8 |
|
fourierdlem13.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
9 |
8
|
a1i |
|- ( ph -> Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) ) |
10 |
|
simpr |
|- ( ( ph /\ i = I ) -> i = I ) |
11 |
10
|
fveq2d |
|- ( ( ph /\ i = I ) -> ( V ` i ) = ( V ` I ) ) |
12 |
11
|
oveq1d |
|- ( ( ph /\ i = I ) -> ( ( V ` i ) - X ) = ( ( V ` I ) - X ) ) |
13 |
4
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
14 |
5 13
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
15 |
6 14
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
16 |
15
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
17 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
18 |
16 17
|
syl |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
19 |
18 7
|
ffvelrnd |
|- ( ph -> ( V ` I ) e. RR ) |
20 |
19 3
|
resubcld |
|- ( ph -> ( ( V ` I ) - X ) e. RR ) |
21 |
9 12 7 20
|
fvmptd |
|- ( ph -> ( Q ` I ) = ( ( V ` I ) - X ) ) |
22 |
21
|
oveq2d |
|- ( ph -> ( X + ( Q ` I ) ) = ( X + ( ( V ` I ) - X ) ) ) |
23 |
3
|
recnd |
|- ( ph -> X e. CC ) |
24 |
19
|
recnd |
|- ( ph -> ( V ` I ) e. CC ) |
25 |
23 24
|
pncan3d |
|- ( ph -> ( X + ( ( V ` I ) - X ) ) = ( V ` I ) ) |
26 |
22 25
|
eqtr2d |
|- ( ph -> ( V ` I ) = ( X + ( Q ` I ) ) ) |
27 |
21 26
|
jca |
|- ( ph -> ( ( Q ` I ) = ( ( V ` I ) - X ) /\ ( V ` I ) = ( X + ( Q ` I ) ) ) ) |