| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem13.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem13.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem13.x |  |-  ( ph -> X e. RR ) | 
						
							| 4 |  | fourierdlem13.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( A + X ) /\ ( p ` m ) = ( B + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 5 |  | fourierdlem13.m |  |-  ( ph -> M e. NN ) | 
						
							| 6 |  | fourierdlem13.v |  |-  ( ph -> V e. ( P ` M ) ) | 
						
							| 7 |  | fourierdlem13.i |  |-  ( ph -> I e. ( 0 ... M ) ) | 
						
							| 8 |  | fourierdlem13.q |  |-  Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) ) | 
						
							| 10 |  | simpr |  |-  ( ( ph /\ i = I ) -> i = I ) | 
						
							| 11 | 10 | fveq2d |  |-  ( ( ph /\ i = I ) -> ( V ` i ) = ( V ` I ) ) | 
						
							| 12 | 11 | oveq1d |  |-  ( ( ph /\ i = I ) -> ( ( V ` i ) - X ) = ( ( V ` I ) - X ) ) | 
						
							| 13 | 4 | fourierdlem2 |  |-  ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) | 
						
							| 14 | 5 13 | syl |  |-  ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) | 
						
							| 15 | 6 14 | mpbid |  |-  ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( A + X ) /\ ( V ` M ) = ( B + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) | 
						
							| 16 | 15 | simpld |  |-  ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 17 |  | elmapi |  |-  ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) | 
						
							| 18 | 16 17 | syl |  |-  ( ph -> V : ( 0 ... M ) --> RR ) | 
						
							| 19 | 18 7 | ffvelcdmd |  |-  ( ph -> ( V ` I ) e. RR ) | 
						
							| 20 | 19 3 | resubcld |  |-  ( ph -> ( ( V ` I ) - X ) e. RR ) | 
						
							| 21 | 9 12 7 20 | fvmptd |  |-  ( ph -> ( Q ` I ) = ( ( V ` I ) - X ) ) | 
						
							| 22 | 21 | oveq2d |  |-  ( ph -> ( X + ( Q ` I ) ) = ( X + ( ( V ` I ) - X ) ) ) | 
						
							| 23 | 3 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 24 | 19 | recnd |  |-  ( ph -> ( V ` I ) e. CC ) | 
						
							| 25 | 23 24 | pncan3d |  |-  ( ph -> ( X + ( ( V ` I ) - X ) ) = ( V ` I ) ) | 
						
							| 26 | 22 25 | eqtr2d |  |-  ( ph -> ( V ` I ) = ( X + ( Q ` I ) ) ) | 
						
							| 27 | 21 26 | jca |  |-  ( ph -> ( ( Q ` I ) = ( ( V ` I ) - X ) /\ ( V ` I ) = ( X + ( Q ` I ) ) ) ) |