Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem15.1 |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
2 |
|
fourierdlem15.2 |
|- ( ph -> M e. NN ) |
3 |
|
fourierdlem15.3 |
|- ( ph -> Q e. ( P ` M ) ) |
4 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
5 |
2 4
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
6 |
3 5
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
7 |
6
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
8 |
|
reex |
|- RR e. _V |
9 |
8
|
a1i |
|- ( ph -> RR e. _V ) |
10 |
|
ovex |
|- ( 0 ... M ) e. _V |
11 |
10
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
12 |
9 11
|
elmapd |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) ) |
13 |
7 12
|
mpbid |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
14 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
15 |
13 14
|
syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
16 |
6
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
17 |
16
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
18 |
17
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
19 |
|
nnnn0 |
|- ( M e. NN -> M e. NN0 ) |
20 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
21 |
19 20
|
eleqtrdi |
|- ( M e. NN -> M e. ( ZZ>= ` 0 ) ) |
22 |
2 21
|
syl |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
23 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
24 |
22 23
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
25 |
13 24
|
ffvelrnd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
26 |
18 25
|
eqeltrrd |
|- ( ph -> A e. RR ) |
27 |
26
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A e. RR ) |
28 |
17
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
29 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
30 |
22 29
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
31 |
13 30
|
ffvelrnd |
|- ( ph -> ( Q ` M ) e. RR ) |
32 |
28 31
|
eqeltrrd |
|- ( ph -> B e. RR ) |
33 |
32
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> B e. RR ) |
34 |
13
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
35 |
18
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
36 |
35
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A = ( Q ` 0 ) ) |
37 |
|
elfzuz |
|- ( i e. ( 0 ... M ) -> i e. ( ZZ>= ` 0 ) ) |
38 |
37
|
adantl |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( ZZ>= ` 0 ) ) |
39 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> Q : ( 0 ... M ) --> RR ) |
40 |
|
0zd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> 0 e. ZZ ) |
41 |
|
elfzel2 |
|- ( i e. ( 0 ... M ) -> M e. ZZ ) |
42 |
41
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> M e. ZZ ) |
43 |
|
elfzelz |
|- ( j e. ( 0 ... i ) -> j e. ZZ ) |
44 |
43
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. ZZ ) |
45 |
|
elfzle1 |
|- ( j e. ( 0 ... i ) -> 0 <_ j ) |
46 |
45
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> 0 <_ j ) |
47 |
43
|
zred |
|- ( j e. ( 0 ... i ) -> j e. RR ) |
48 |
47
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. RR ) |
49 |
|
elfzelz |
|- ( i e. ( 0 ... M ) -> i e. ZZ ) |
50 |
49
|
zred |
|- ( i e. ( 0 ... M ) -> i e. RR ) |
51 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> i e. RR ) |
52 |
41
|
zred |
|- ( i e. ( 0 ... M ) -> M e. RR ) |
53 |
52
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> M e. RR ) |
54 |
|
elfzle2 |
|- ( j e. ( 0 ... i ) -> j <_ i ) |
55 |
54
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j <_ i ) |
56 |
|
elfzle2 |
|- ( i e. ( 0 ... M ) -> i <_ M ) |
57 |
56
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> i <_ M ) |
58 |
48 51 53 55 57
|
letrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j <_ M ) |
59 |
40 42 44 46 58
|
elfzd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... i ) ) -> j e. ( 0 ... M ) ) |
60 |
59
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> j e. ( 0 ... M ) ) |
61 |
39 60
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... i ) ) -> ( Q ` j ) e. RR ) |
62 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ph ) |
63 |
|
elfzle1 |
|- ( j e. ( 0 ... ( i - 1 ) ) -> 0 <_ j ) |
64 |
63
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> 0 <_ j ) |
65 |
|
elfzelz |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j e. ZZ ) |
66 |
65
|
zred |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j e. RR ) |
67 |
66
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. RR ) |
68 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> i e. RR ) |
69 |
52
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> M e. RR ) |
70 |
|
peano2rem |
|- ( i e. RR -> ( i - 1 ) e. RR ) |
71 |
68 70
|
syl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( i - 1 ) e. RR ) |
72 |
|
elfzle2 |
|- ( j e. ( 0 ... ( i - 1 ) ) -> j <_ ( i - 1 ) ) |
73 |
72
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j <_ ( i - 1 ) ) |
74 |
68
|
ltm1d |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( i - 1 ) < i ) |
75 |
67 71 68 73 74
|
lelttrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j < i ) |
76 |
56
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> i <_ M ) |
77 |
67 68 69 75 76
|
ltletrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j < M ) |
78 |
65
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ZZ ) |
79 |
|
0zd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> 0 e. ZZ ) |
80 |
41
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> M e. ZZ ) |
81 |
|
elfzo |
|- ( ( j e. ZZ /\ 0 e. ZZ /\ M e. ZZ ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
82 |
78 79 80 81
|
syl3anc |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
83 |
64 77 82
|
mpbir2and |
|- ( ( i e. ( 0 ... M ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
84 |
83
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
85 |
13
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
86 |
|
elfzofz |
|- ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) |
87 |
86
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) |
88 |
85 87
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) e. RR ) |
89 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
90 |
89
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
91 |
85 90
|
ffvelrnd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
92 |
|
eleq1w |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
93 |
92
|
anbi2d |
|- ( i = j -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ j e. ( 0 ..^ M ) ) ) ) |
94 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
95 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
96 |
95
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
97 |
94 96
|
breq12d |
|- ( i = j -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) |
98 |
93 97
|
imbi12d |
|- ( i = j -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) ) ) |
99 |
16
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
100 |
99
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
101 |
98 100
|
chvarvv |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
102 |
88 91 101
|
ltled |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
103 |
62 84 102
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... ( i - 1 ) ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
104 |
38 61 103
|
monoord |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` 0 ) <_ ( Q ` i ) ) |
105 |
36 104
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> A <_ ( Q ` i ) ) |
106 |
|
elfzuz3 |
|- ( i e. ( 0 ... M ) -> M e. ( ZZ>= ` i ) ) |
107 |
106
|
adantl |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> M e. ( ZZ>= ` i ) ) |
108 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
109 |
|
fz0fzelfz0 |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... M ) ) -> j e. ( 0 ... M ) ) |
110 |
109
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> j e. ( 0 ... M ) ) |
111 |
108 110
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... M ) ) -> ( Q ` j ) e. RR ) |
112 |
13
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> Q : ( 0 ... M ) --> RR ) |
113 |
|
0zd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 e. ZZ ) |
114 |
41
|
ad2antlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> M e. ZZ ) |
115 |
|
elfzelz |
|- ( j e. ( i ... ( M - 1 ) ) -> j e. ZZ ) |
116 |
115
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ZZ ) |
117 |
|
0red |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 e. RR ) |
118 |
50
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> i e. RR ) |
119 |
115
|
zred |
|- ( j e. ( i ... ( M - 1 ) ) -> j e. RR ) |
120 |
119
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
121 |
|
elfzle1 |
|- ( i e. ( 0 ... M ) -> 0 <_ i ) |
122 |
121
|
adantr |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ i ) |
123 |
|
elfzle1 |
|- ( j e. ( i ... ( M - 1 ) ) -> i <_ j ) |
124 |
123
|
adantl |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> i <_ j ) |
125 |
117 118 120 122 124
|
letrd |
|- ( ( i e. ( 0 ... M ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ j ) |
126 |
125
|
adantll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ j ) |
127 |
119
|
adantl |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
128 |
2
|
nnred |
|- ( ph -> M e. RR ) |
129 |
128
|
adantr |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> M e. RR ) |
130 |
|
1red |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. RR ) |
131 |
129 130
|
resubcld |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( M - 1 ) e. RR ) |
132 |
|
elfzle2 |
|- ( j e. ( i ... ( M - 1 ) ) -> j <_ ( M - 1 ) ) |
133 |
132
|
adantl |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ ( M - 1 ) ) |
134 |
129
|
ltm1d |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( M - 1 ) < M ) |
135 |
127 131 129 133 134
|
lelttrd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j < M ) |
136 |
127 129 135
|
ltled |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ M ) |
137 |
136
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j <_ M ) |
138 |
113 114 116 126 137
|
elfzd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ( 0 ... M ) ) |
139 |
112 138
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) e. RR ) |
140 |
116
|
peano2zd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) e. ZZ ) |
141 |
119
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. RR ) |
142 |
|
1red |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. RR ) |
143 |
|
0le1 |
|- 0 <_ 1 |
144 |
143
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ 1 ) |
145 |
141 142 126 144
|
addge0d |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> 0 <_ ( j + 1 ) ) |
146 |
127 131 130 133
|
leadd1dd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ ( ( M - 1 ) + 1 ) ) |
147 |
2
|
nncnd |
|- ( ph -> M e. CC ) |
148 |
147
|
adantr |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> M e. CC ) |
149 |
|
1cnd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> 1 e. CC ) |
150 |
148 149
|
npcand |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( ( M - 1 ) + 1 ) = M ) |
151 |
146 150
|
breqtrd |
|- ( ( ph /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ M ) |
152 |
151
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) <_ M ) |
153 |
113 114 140 145 152
|
elfzd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
154 |
112 153
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
155 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ph ) |
156 |
135
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j < M ) |
157 |
116 113 114 81
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( j e. ( 0 ..^ M ) <-> ( 0 <_ j /\ j < M ) ) ) |
158 |
126 156 157
|
mpbir2and |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
159 |
155 158 101
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) < ( Q ` ( j + 1 ) ) ) |
160 |
139 154 159
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( i ... ( M - 1 ) ) ) -> ( Q ` j ) <_ ( Q ` ( j + 1 ) ) ) |
161 |
107 111 160
|
monoord |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ ( Q ` M ) ) |
162 |
28
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` M ) = B ) |
163 |
161 162
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) <_ B ) |
164 |
27 33 34 105 163
|
eliccd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
165 |
164
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ... M ) ( Q ` i ) e. ( A [,] B ) ) |
166 |
|
fnfvrnss |
|- ( ( Q Fn ( 0 ... M ) /\ A. i e. ( 0 ... M ) ( Q ` i ) e. ( A [,] B ) ) -> ran Q C_ ( A [,] B ) ) |
167 |
15 165 166
|
syl2anc |
|- ( ph -> ran Q C_ ( A [,] B ) ) |
168 |
|
df-f |
|- ( Q : ( 0 ... M ) --> ( A [,] B ) <-> ( Q Fn ( 0 ... M ) /\ ran Q C_ ( A [,] B ) ) ) |
169 |
15 167 168
|
sylanbrc |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |