Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem19.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem19.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem19.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem19.x |
|- ( ph -> X e. RR ) |
5 |
|
fourierdlem19.d |
|- D = { y e. ( ( A + X ) (,] ( B + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. C } |
6 |
|
fourierdlem19.t |
|- T = ( B - A ) |
7 |
|
fourierdlem19.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
8 |
|
fourierdlem19.w |
|- ( ph -> W e. D ) |
9 |
|
fourierdlem19.z |
|- ( ph -> Z e. D ) |
10 |
|
fourierdlem19.ezew |
|- ( ph -> ( E ` Z ) = ( E ` W ) ) |
11 |
1 4
|
readdcld |
|- ( ph -> ( A + X ) e. RR ) |
12 |
11
|
rexrd |
|- ( ph -> ( A + X ) e. RR* ) |
13 |
2 4
|
readdcld |
|- ( ph -> ( B + X ) e. RR ) |
14 |
13
|
rexrd |
|- ( ph -> ( B + X ) e. RR* ) |
15 |
|
ssrab2 |
|- { y e. ( ( A + X ) (,] ( B + X ) ) | E. k e. ZZ ( y + ( k x. T ) ) e. C } C_ ( ( A + X ) (,] ( B + X ) ) |
16 |
5 15
|
eqsstri |
|- D C_ ( ( A + X ) (,] ( B + X ) ) |
17 |
16 9
|
sselid |
|- ( ph -> Z e. ( ( A + X ) (,] ( B + X ) ) ) |
18 |
|
iocleub |
|- ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR* /\ Z e. ( ( A + X ) (,] ( B + X ) ) ) -> Z <_ ( B + X ) ) |
19 |
12 14 17 18
|
syl3anc |
|- ( ph -> Z <_ ( B + X ) ) |
20 |
19
|
adantr |
|- ( ( ph /\ W < Z ) -> Z <_ ( B + X ) ) |
21 |
13
|
adantr |
|- ( ( ph /\ W < Z ) -> ( B + X ) e. RR ) |
22 |
|
iocssre |
|- ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR ) -> ( ( A + X ) (,] ( B + X ) ) C_ RR ) |
23 |
12 13 22
|
syl2anc |
|- ( ph -> ( ( A + X ) (,] ( B + X ) ) C_ RR ) |
24 |
16 8
|
sselid |
|- ( ph -> W e. ( ( A + X ) (,] ( B + X ) ) ) |
25 |
23 24
|
sseldd |
|- ( ph -> W e. RR ) |
26 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
27 |
6 26
|
eqeltrid |
|- ( ph -> T e. RR ) |
28 |
25 27
|
readdcld |
|- ( ph -> ( W + T ) e. RR ) |
29 |
28
|
adantr |
|- ( ( ph /\ W < Z ) -> ( W + T ) e. RR ) |
30 |
23 17
|
sseldd |
|- ( ph -> Z e. RR ) |
31 |
30
|
adantr |
|- ( ( ph /\ W < Z ) -> Z e. RR ) |
32 |
6
|
eqcomi |
|- ( B - A ) = T |
33 |
32
|
a1i |
|- ( ph -> ( B - A ) = T ) |
34 |
2
|
recnd |
|- ( ph -> B e. CC ) |
35 |
1
|
recnd |
|- ( ph -> A e. CC ) |
36 |
27
|
recnd |
|- ( ph -> T e. CC ) |
37 |
34 35 36
|
subaddd |
|- ( ph -> ( ( B - A ) = T <-> ( A + T ) = B ) ) |
38 |
33 37
|
mpbid |
|- ( ph -> ( A + T ) = B ) |
39 |
38
|
eqcomd |
|- ( ph -> B = ( A + T ) ) |
40 |
39
|
oveq1d |
|- ( ph -> ( B + X ) = ( ( A + T ) + X ) ) |
41 |
4
|
recnd |
|- ( ph -> X e. CC ) |
42 |
35 36 41
|
add32d |
|- ( ph -> ( ( A + T ) + X ) = ( ( A + X ) + T ) ) |
43 |
40 42
|
eqtrd |
|- ( ph -> ( B + X ) = ( ( A + X ) + T ) ) |
44 |
|
iocgtlb |
|- ( ( ( A + X ) e. RR* /\ ( B + X ) e. RR* /\ W e. ( ( A + X ) (,] ( B + X ) ) ) -> ( A + X ) < W ) |
45 |
12 14 24 44
|
syl3anc |
|- ( ph -> ( A + X ) < W ) |
46 |
11 25 27 45
|
ltadd1dd |
|- ( ph -> ( ( A + X ) + T ) < ( W + T ) ) |
47 |
43 46
|
eqbrtrd |
|- ( ph -> ( B + X ) < ( W + T ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ W < Z ) -> ( B + X ) < ( W + T ) ) |
49 |
7
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
50 |
|
id |
|- ( x = W -> x = W ) |
51 |
|
oveq2 |
|- ( x = W -> ( B - x ) = ( B - W ) ) |
52 |
51
|
oveq1d |
|- ( x = W -> ( ( B - x ) / T ) = ( ( B - W ) / T ) ) |
53 |
52
|
fveq2d |
|- ( x = W -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - W ) / T ) ) ) |
54 |
53
|
oveq1d |
|- ( x = W -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) |
55 |
50 54
|
oveq12d |
|- ( x = W -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) |
56 |
55
|
adantl |
|- ( ( ph /\ x = W ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) |
57 |
2 25
|
resubcld |
|- ( ph -> ( B - W ) e. RR ) |
58 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
59 |
3 58
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
60 |
59 6
|
breqtrrdi |
|- ( ph -> 0 < T ) |
61 |
60
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
62 |
57 27 61
|
redivcld |
|- ( ph -> ( ( B - W ) / T ) e. RR ) |
63 |
62
|
flcld |
|- ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) |
64 |
63
|
zred |
|- ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. RR ) |
65 |
64 27
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. RR ) |
66 |
25 65
|
readdcld |
|- ( ph -> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) e. RR ) |
67 |
49 56 25 66
|
fvmptd |
|- ( ph -> ( E ` W ) = ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) |
68 |
67 66
|
eqeltrd |
|- ( ph -> ( E ` W ) e. RR ) |
69 |
68
|
recnd |
|- ( ph -> ( E ` W ) e. CC ) |
70 |
69
|
adantr |
|- ( ( ph /\ W < Z ) -> ( E ` W ) e. CC ) |
71 |
65
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. CC ) |
72 |
71
|
adantr |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. CC ) |
73 |
36
|
adantr |
|- ( ( ph /\ W < Z ) -> T e. CC ) |
74 |
70 72 73
|
subsubd |
|- ( ( ph /\ W < Z ) -> ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) |
75 |
74
|
eqcomd |
|- ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) = ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) ) |
76 |
2 30
|
resubcld |
|- ( ph -> ( B - Z ) e. RR ) |
77 |
76 27 61
|
redivcld |
|- ( ph -> ( ( B - Z ) / T ) e. RR ) |
78 |
77
|
flcld |
|- ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. ZZ ) |
79 |
78
|
zred |
|- ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. RR ) |
80 |
79
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) e. RR ) |
81 |
27
|
adantr |
|- ( ( ph /\ W < Z ) -> T e. RR ) |
82 |
80 81
|
remulcld |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. RR ) |
83 |
64
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) e. RR ) |
84 |
83 81
|
remulcld |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - W ) / T ) ) x. T ) e. RR ) |
85 |
84 81
|
resubcld |
|- ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) e. RR ) |
86 |
68
|
adantr |
|- ( ( ph /\ W < Z ) -> ( E ` W ) e. RR ) |
87 |
79 27
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. RR ) |
88 |
87
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) e. CC ) |
89 |
88 36
|
pncand |
|- ( ph -> ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) |
90 |
89
|
eqcomd |
|- ( ph -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) = ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) ) |
91 |
90
|
adantr |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) = ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) ) |
92 |
82 81
|
readdcld |
|- ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) e. RR ) |
93 |
79
|
recnd |
|- ( ph -> ( |_ ` ( ( B - Z ) / T ) ) e. CC ) |
94 |
93 36
|
adddirp1d |
|- ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) ) |
95 |
94
|
eqcomd |
|- ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) ) |
96 |
95
|
adantr |
|- ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) ) |
97 |
|
1red |
|- ( ( ph /\ W < Z ) -> 1 e. RR ) |
98 |
80 97
|
readdcld |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) e. RR ) |
99 |
|
0red |
|- ( ph -> 0 e. RR ) |
100 |
99 27 60
|
ltled |
|- ( ph -> 0 <_ T ) |
101 |
100
|
adantr |
|- ( ( ph /\ W < Z ) -> 0 <_ T ) |
102 |
86 31
|
resubcld |
|- ( ( ph /\ W < Z ) -> ( ( E ` W ) - Z ) e. RR ) |
103 |
25
|
adantr |
|- ( ( ph /\ W < Z ) -> W e. RR ) |
104 |
86 103
|
resubcld |
|- ( ( ph /\ W < Z ) -> ( ( E ` W ) - W ) e. RR ) |
105 |
27 60
|
elrpd |
|- ( ph -> T e. RR+ ) |
106 |
105
|
adantr |
|- ( ( ph /\ W < Z ) -> T e. RR+ ) |
107 |
|
simpr |
|- ( ( ph /\ W < Z ) -> W < Z ) |
108 |
103 31 86 107
|
ltsub2dd |
|- ( ( ph /\ W < Z ) -> ( ( E ` W ) - Z ) < ( ( E ` W ) - W ) ) |
109 |
102 104 106 108
|
ltdiv1dd |
|- ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - Z ) / T ) < ( ( ( E ` W ) - W ) / T ) ) |
110 |
|
id |
|- ( x = Z -> x = Z ) |
111 |
|
oveq2 |
|- ( x = Z -> ( B - x ) = ( B - Z ) ) |
112 |
111
|
oveq1d |
|- ( x = Z -> ( ( B - x ) / T ) = ( ( B - Z ) / T ) ) |
113 |
112
|
fveq2d |
|- ( x = Z -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - Z ) / T ) ) ) |
114 |
113
|
oveq1d |
|- ( x = Z -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) |
115 |
110 114
|
oveq12d |
|- ( x = Z -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
116 |
115
|
adantl |
|- ( ( ph /\ x = Z ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
117 |
30 87
|
readdcld |
|- ( ph -> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) e. RR ) |
118 |
49 116 30 117
|
fvmptd |
|- ( ph -> ( E ` Z ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
119 |
10 118
|
eqtr3d |
|- ( ph -> ( E ` W ) = ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
120 |
119
|
oveq1d |
|- ( ph -> ( ( E ` W ) - Z ) = ( ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) - Z ) ) |
121 |
30
|
recnd |
|- ( ph -> Z e. CC ) |
122 |
121 88
|
pncan2d |
|- ( ph -> ( ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) - Z ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) |
123 |
120 122
|
eqtrd |
|- ( ph -> ( ( E ` W ) - Z ) = ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) |
124 |
123
|
oveq1d |
|- ( ph -> ( ( ( E ` W ) - Z ) / T ) = ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) / T ) ) |
125 |
93 36 61
|
divcan4d |
|- ( ph -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - Z ) / T ) ) ) |
126 |
124 125
|
eqtr2d |
|- ( ph -> ( |_ ` ( ( B - Z ) / T ) ) = ( ( ( E ` W ) - Z ) / T ) ) |
127 |
126
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) = ( ( ( E ` W ) - Z ) / T ) ) |
128 |
67
|
oveq1d |
|- ( ph -> ( ( E ` W ) - W ) = ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) ) |
129 |
128
|
oveq1d |
|- ( ph -> ( ( ( E ` W ) - W ) / T ) = ( ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) / T ) ) |
130 |
25
|
recnd |
|- ( ph -> W e. CC ) |
131 |
130 71
|
pncan2d |
|- ( ph -> ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) = ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) |
132 |
131
|
oveq1d |
|- ( ph -> ( ( ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) - W ) / T ) = ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) / T ) ) |
133 |
64
|
recnd |
|- ( ph -> ( |_ ` ( ( B - W ) / T ) ) e. CC ) |
134 |
133 36 61
|
divcan4d |
|- ( ph -> ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) / T ) = ( |_ ` ( ( B - W ) / T ) ) ) |
135 |
129 132 134
|
3eqtrrd |
|- ( ph -> ( |_ ` ( ( B - W ) / T ) ) = ( ( ( E ` W ) - W ) / T ) ) |
136 |
135
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) = ( ( ( E ` W ) - W ) / T ) ) |
137 |
109 127 136
|
3brtr4d |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) ) |
138 |
78
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - Z ) / T ) ) e. ZZ ) |
139 |
63
|
adantr |
|- ( ( ph /\ W < Z ) -> ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) |
140 |
|
zltp1le |
|- ( ( ( |_ ` ( ( B - Z ) / T ) ) e. ZZ /\ ( |_ ` ( ( B - W ) / T ) ) e. ZZ ) -> ( ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) <-> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) ) |
141 |
138 139 140
|
syl2anc |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) < ( |_ ` ( ( B - W ) / T ) ) <-> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) ) |
142 |
137 141
|
mpbid |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) <_ ( |_ ` ( ( B - W ) / T ) ) ) |
143 |
98 83 81 101 142
|
lemul1ad |
|- ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) + 1 ) x. T ) <_ ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) |
144 |
96 143
|
eqbrtrd |
|- ( ( ph /\ W < Z ) -> ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) <_ ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) |
145 |
92 84 81 144
|
lesub1dd |
|- ( ( ph /\ W < Z ) -> ( ( ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) + T ) - T ) <_ ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) |
146 |
91 145
|
eqbrtrd |
|- ( ( ph /\ W < Z ) -> ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) <_ ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) |
147 |
82 85 86 146
|
lesub2dd |
|- ( ( ph /\ W < Z ) -> ( ( E ` W ) - ( ( ( |_ ` ( ( B - W ) / T ) ) x. T ) - T ) ) <_ ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
148 |
75 147
|
eqbrtrd |
|- ( ( ph /\ W < Z ) -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) <_ ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
149 |
67
|
eqcomd |
|- ( ph -> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = ( E ` W ) ) |
150 |
69 71 130
|
subadd2d |
|- ( ph -> ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = W <-> ( W + ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = ( E ` W ) ) ) |
151 |
149 150
|
mpbird |
|- ( ph -> ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) = W ) |
152 |
151
|
eqcomd |
|- ( ph -> W = ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) ) |
153 |
152
|
oveq1d |
|- ( ph -> ( W + T ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) |
154 |
153
|
adantr |
|- ( ( ph /\ W < Z ) -> ( W + T ) = ( ( ( E ` W ) - ( ( |_ ` ( ( B - W ) / T ) ) x. T ) ) + T ) ) |
155 |
118
|
eqcomd |
|- ( ph -> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( E ` Z ) ) |
156 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
157 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
158 |
156 2 157
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
159 |
1 2 3 6 7
|
fourierdlem4 |
|- ( ph -> E : RR --> ( A (,] B ) ) |
160 |
159 30
|
ffvelrnd |
|- ( ph -> ( E ` Z ) e. ( A (,] B ) ) |
161 |
158 160
|
sseldd |
|- ( ph -> ( E ` Z ) e. RR ) |
162 |
161
|
recnd |
|- ( ph -> ( E ` Z ) e. CC ) |
163 |
162 88 121
|
subadd2d |
|- ( ph -> ( ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = Z <-> ( Z + ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( E ` Z ) ) ) |
164 |
155 163
|
mpbird |
|- ( ph -> ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = Z ) |
165 |
10
|
oveq1d |
|- ( ph -> ( ( E ` Z ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
166 |
164 165
|
eqtr3d |
|- ( ph -> Z = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ W < Z ) -> Z = ( ( E ` W ) - ( ( |_ ` ( ( B - Z ) / T ) ) x. T ) ) ) |
168 |
148 154 167
|
3brtr4d |
|- ( ( ph /\ W < Z ) -> ( W + T ) <_ Z ) |
169 |
21 29 31 48 168
|
ltletrd |
|- ( ( ph /\ W < Z ) -> ( B + X ) < Z ) |
170 |
21 31
|
ltnled |
|- ( ( ph /\ W < Z ) -> ( ( B + X ) < Z <-> -. Z <_ ( B + X ) ) ) |
171 |
169 170
|
mpbid |
|- ( ( ph /\ W < Z ) -> -. Z <_ ( B + X ) ) |
172 |
20 171
|
pm2.65da |
|- ( ph -> -. W < Z ) |