| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem2.1 |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 2 |  | oveq2 |  |-  ( m = M -> ( 0 ... m ) = ( 0 ... M ) ) | 
						
							| 3 | 2 | oveq2d |  |-  ( m = M -> ( RR ^m ( 0 ... m ) ) = ( RR ^m ( 0 ... M ) ) ) | 
						
							| 4 |  | fveqeq2 |  |-  ( m = M -> ( ( p ` m ) = B <-> ( p ` M ) = B ) ) | 
						
							| 5 | 4 | anbi2d |  |-  ( m = M -> ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) <-> ( ( p ` 0 ) = A /\ ( p ` M ) = B ) ) ) | 
						
							| 6 |  | oveq2 |  |-  ( m = M -> ( 0 ..^ m ) = ( 0 ..^ M ) ) | 
						
							| 7 | 6 | raleqdv |  |-  ( m = M -> ( A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) ) | 
						
							| 8 | 5 7 | anbi12d |  |-  ( m = M -> ( ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) ) ) | 
						
							| 9 | 3 8 | rabeqbidv |  |-  ( m = M -> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } = { p e. ( RR ^m ( 0 ... M ) ) | ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 10 |  | ovex |  |-  ( RR ^m ( 0 ... M ) ) e. _V | 
						
							| 11 | 10 | rabex |  |-  { p e. ( RR ^m ( 0 ... M ) ) | ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } e. _V | 
						
							| 12 | 9 1 11 | fvmpt |  |-  ( M e. NN -> ( P ` M ) = { p e. ( RR ^m ( 0 ... M ) ) | ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 13 | 12 | eleq2d |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> Q e. { p e. ( RR ^m ( 0 ... M ) ) | ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) ) | 
						
							| 14 |  | fveq1 |  |-  ( p = Q -> ( p ` 0 ) = ( Q ` 0 ) ) | 
						
							| 15 | 14 | eqeq1d |  |-  ( p = Q -> ( ( p ` 0 ) = A <-> ( Q ` 0 ) = A ) ) | 
						
							| 16 |  | fveq1 |  |-  ( p = Q -> ( p ` M ) = ( Q ` M ) ) | 
						
							| 17 | 16 | eqeq1d |  |-  ( p = Q -> ( ( p ` M ) = B <-> ( Q ` M ) = B ) ) | 
						
							| 18 | 15 17 | anbi12d |  |-  ( p = Q -> ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) <-> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) ) | 
						
							| 19 |  | fveq1 |  |-  ( p = Q -> ( p ` i ) = ( Q ` i ) ) | 
						
							| 20 |  | fveq1 |  |-  ( p = Q -> ( p ` ( i + 1 ) ) = ( Q ` ( i + 1 ) ) ) | 
						
							| 21 | 19 20 | breq12d |  |-  ( p = Q -> ( ( p ` i ) < ( p ` ( i + 1 ) ) <-> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 22 | 21 | ralbidv |  |-  ( p = Q -> ( A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) <-> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) | 
						
							| 23 | 18 22 | anbi12d |  |-  ( p = Q -> ( ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) <-> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 24 | 23 | elrab |  |-  ( Q e. { p e. ( RR ^m ( 0 ... M ) ) | ( ( ( p ` 0 ) = A /\ ( p ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 25 | 13 24 | bitrdi |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |