| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem27.a | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem27.b | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem27.q | 
							 |-  ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem27.i | 
							 |-  ( ph -> I e. ( 0 ..^ M ) )  | 
						
						
							| 5 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A e. RR* )  | 
						
						
							| 6 | 
							
								2
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> B e. RR* )  | 
						
						
							| 7 | 
							
								
							 | 
							elioore | 
							 |-  ( x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) -> x e. RR )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantl | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR )  | 
						
						
							| 9 | 
							
								
							 | 
							iccssxr | 
							 |-  ( A [,] B ) C_ RR*  | 
						
						
							| 10 | 
							
								
							 | 
							elfzofz | 
							 |-  ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) )  | 
						
						
							| 11 | 
							
								4 10
							 | 
							syl | 
							 |-  ( ph -> I e. ( 0 ... M ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` I ) e. ( A [,] B ) )  | 
						
						
							| 13 | 
							
								9 12
							 | 
							sselid | 
							 |-  ( ph -> ( Q ` I ) e. RR* )  | 
						
						
							| 14 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 15 | 
							
								8
							 | 
							rexrd | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR* )  | 
						
						
							| 16 | 
							
								
							 | 
							iccgelb | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( Q ` I ) e. ( A [,] B ) ) -> A <_ ( Q ` I ) )  | 
						
						
							| 17 | 
							
								1 2 12 16
							 | 
							syl3anc | 
							 |-  ( ph -> A <_ ( Q ` I ) )  | 
						
						
							| 18 | 
							
								17
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A <_ ( Q ` I ) )  | 
						
						
							| 19 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 20 | 
							
								4 19
							 | 
							syl | 
							 |-  ( ph -> ( I + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 21 | 
							
								3 20
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. ( A [,] B ) )  | 
						
						
							| 22 | 
							
								9 21
							 | 
							sselid | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 23 | 
							
								22
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 24 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 25 | 
							
								
							 | 
							ioogtlb | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x )  | 
						
						
							| 26 | 
							
								14 23 24 25
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x )  | 
						
						
							| 27 | 
							
								5 14 15 18 26
							 | 
							xrlelttrd | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> A < x )  | 
						
						
							| 28 | 
							
								
							 | 
							iooltub | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 29 | 
							
								14 23 24 28
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 30 | 
							
								
							 | 
							iccleub | 
							 |-  ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( I + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( I + 1 ) ) <_ B )  | 
						
						
							| 31 | 
							
								1 2 21 30
							 | 
							syl3anc | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) <_ B )  | 
						
						
							| 32 | 
							
								31
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) <_ B )  | 
						
						
							| 33 | 
							
								15 23 6 29 32
							 | 
							xrltletrd | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x < B )  | 
						
						
							| 34 | 
							
								5 6 8 27 33
							 | 
							eliood | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( A (,) B ) )  | 
						
						
							| 35 | 
							
								34
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. ( A (,) B ) )  | 
						
						
							| 36 | 
							
								
							 | 
							dfss3 | 
							 |-  ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( A (,) B ) <-> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. ( A (,) B ) )  | 
						
						
							| 37 | 
							
								35 36
							 | 
							sylibr | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( A (,) B ) )  |