Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem28.1 |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem28.x |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem28.a |
|- ( ph -> A e. RR ) |
4 |
|
fourierdlem28.3b |
|- ( ph -> B e. RR ) |
5 |
|
fourierdlem28.d |
|- D = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
6 |
|
fourierdlem28.df |
|- ( ph -> D : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
7 |
|
reelprrecn |
|- RR e. { RR , CC } |
8 |
7
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
9 |
2 3
|
readdcld |
|- ( ph -> ( X + A ) e. RR ) |
10 |
9
|
rexrd |
|- ( ph -> ( X + A ) e. RR* ) |
11 |
10
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) e. RR* ) |
12 |
2 4
|
readdcld |
|- ( ph -> ( X + B ) e. RR ) |
13 |
12
|
rexrd |
|- ( ph -> ( X + B ) e. RR* ) |
14 |
13
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + B ) e. RR* ) |
15 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
16 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
17 |
16
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
18 |
15 17
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
19 |
3
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR ) |
20 |
19
|
rexrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR* ) |
21 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
22 |
21
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR* ) |
23 |
|
simpr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A (,) B ) ) |
24 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> A < s ) |
25 |
20 22 23 24
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A < s ) |
26 |
19 17 15 25
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) < ( X + s ) ) |
27 |
4
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR ) |
28 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> s < B ) |
29 |
20 22 23 28
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s < B ) |
30 |
17 27 15 29
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) < ( X + B ) ) |
31 |
11 14 18 26 30
|
eliood |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) |
32 |
|
1red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 1 e. RR ) |
33 |
1
|
adantr |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> F : RR --> RR ) |
34 |
|
elioore |
|- ( y e. ( ( X + A ) (,) ( X + B ) ) -> y e. RR ) |
35 |
34
|
adantl |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> y e. RR ) |
36 |
33 35
|
ffvelrnd |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( F ` y ) e. RR ) |
37 |
36
|
recnd |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( F ` y ) e. CC ) |
38 |
6
|
ffvelrnda |
|- ( ( ph /\ y e. ( ( X + A ) (,) ( X + B ) ) ) -> ( D ` y ) e. RR ) |
39 |
15
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. CC ) |
40 |
|
0red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 0 e. RR ) |
41 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
42 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
43 |
42
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
44 |
41 43
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
45 |
44
|
a1i |
|- ( ph -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
46 |
2
|
recnd |
|- ( ph -> X e. CC ) |
47 |
8 45 46
|
dvmptconst |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> X ) ) = ( s e. ( A (,) B ) |-> 0 ) ) |
48 |
17
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC ) |
49 |
8 45
|
dvmptidg |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> s ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
50 |
8 39 40 47 48 32 49
|
dvmptadd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( X + s ) ) ) = ( s e. ( A (,) B ) |-> ( 0 + 1 ) ) ) |
51 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
52 |
51
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 0 + 1 ) = 1 ) |
53 |
52
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( 0 + 1 ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
54 |
50 53
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( X + s ) ) ) = ( s e. ( A (,) B ) |-> 1 ) ) |
55 |
1
|
feqmptd |
|- ( ph -> F = ( y e. RR |-> ( F ` y ) ) ) |
56 |
55
|
reseq1d |
|- ( ph -> ( F |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( y e. RR |-> ( F ` y ) ) |` ( ( X + A ) (,) ( X + B ) ) ) ) |
57 |
|
ioossre |
|- ( ( X + A ) (,) ( X + B ) ) C_ RR |
58 |
57
|
a1i |
|- ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ RR ) |
59 |
58
|
resmptd |
|- ( ph -> ( ( y e. RR |-> ( F ` y ) ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) |
60 |
56 59
|
eqtr2d |
|- ( ph -> ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) = ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
61 |
60
|
oveq2d |
|- ( ph -> ( RR _D ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ) |
62 |
5
|
eqcomi |
|- ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = D |
63 |
62
|
a1i |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = D ) |
64 |
6
|
feqmptd |
|- ( ph -> D = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( D ` y ) ) ) |
65 |
61 63 64
|
3eqtrd |
|- ( ph -> ( RR _D ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( F ` y ) ) ) = ( y e. ( ( X + A ) (,) ( X + B ) ) |-> ( D ` y ) ) ) |
66 |
|
fveq2 |
|- ( y = ( X + s ) -> ( F ` y ) = ( F ` ( X + s ) ) ) |
67 |
|
fveq2 |
|- ( y = ( X + s ) -> ( D ` y ) = ( D ` ( X + s ) ) ) |
68 |
8 8 31 32 37 38 54 65 66 67
|
dvmptco |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( D ` ( X + s ) ) x. 1 ) ) ) |
69 |
6
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> D : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
70 |
69 31
|
ffvelrnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( D ` ( X + s ) ) e. RR ) |
71 |
70
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( D ` ( X + s ) ) e. CC ) |
72 |
71
|
mulid1d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( D ` ( X + s ) ) x. 1 ) = ( D ` ( X + s ) ) ) |
73 |
72
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( D ` ( X + s ) ) x. 1 ) ) = ( s e. ( A (,) B ) |-> ( D ` ( X + s ) ) ) ) |
74 |
68 73
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( D ` ( X + s ) ) ) ) |