Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem29.1 |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
2 |
|
eqeq1 |
|- ( s = A -> ( s = 0 <-> A = 0 ) ) |
3 |
|
id |
|- ( s = A -> s = A ) |
4 |
|
fvoveq1 |
|- ( s = A -> ( sin ` ( s / 2 ) ) = ( sin ` ( A / 2 ) ) ) |
5 |
4
|
oveq2d |
|- ( s = A -> ( 2 x. ( sin ` ( s / 2 ) ) ) = ( 2 x. ( sin ` ( A / 2 ) ) ) ) |
6 |
3 5
|
oveq12d |
|- ( s = A -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( A / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) |
7 |
2 6
|
ifbieq2d |
|- ( s = A -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = if ( A = 0 , 1 , ( A / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) ) |
8 |
|
1ex |
|- 1 e. _V |
9 |
|
ovex |
|- ( A / ( 2 x. ( sin ` ( A / 2 ) ) ) ) e. _V |
10 |
8 9
|
ifex |
|- if ( A = 0 , 1 , ( A / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) e. _V |
11 |
7 1 10
|
fvmpt |
|- ( A e. ( -u _pi [,] _pi ) -> ( K ` A ) = if ( A = 0 , 1 , ( A / ( 2 x. ( sin ` ( A / 2 ) ) ) ) ) ) |