| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem32.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem32.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem32.altb |  |-  ( ph -> A < B ) | 
						
							| 4 |  | fourierdlem32.f |  |-  ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) | 
						
							| 5 |  | fourierdlem32.l |  |-  ( ph -> R e. ( F limCC A ) ) | 
						
							| 6 |  | fourierdlem32.c |  |-  ( ph -> C e. RR ) | 
						
							| 7 |  | fourierdlem32.d |  |-  ( ph -> D e. RR ) | 
						
							| 8 |  | fourierdlem32.cltd |  |-  ( ph -> C < D ) | 
						
							| 9 |  | fourierdlem32.ss |  |-  ( ph -> ( C (,) D ) C_ ( A (,) B ) ) | 
						
							| 10 |  | fourierdlem32.y |  |-  Y = if ( C = A , R , ( F ` C ) ) | 
						
							| 11 |  | fourierdlem32.j |  |-  J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) | 
						
							| 12 | 5 | adantr |  |-  ( ( ph /\ C = A ) -> R e. ( F limCC A ) ) | 
						
							| 13 |  | iftrue |  |-  ( C = A -> if ( C = A , R , ( F ` C ) ) = R ) | 
						
							| 14 | 10 13 | eqtr2id |  |-  ( C = A -> R = Y ) | 
						
							| 15 | 14 | adantl |  |-  ( ( ph /\ C = A ) -> R = Y ) | 
						
							| 16 |  | oveq2 |  |-  ( C = A -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) | 
						
							| 17 | 16 | adantl |  |-  ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) | 
						
							| 18 |  | cncff |  |-  ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> F : ( A (,) B ) --> CC ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ C = A ) -> F : ( A (,) B ) --> CC ) | 
						
							| 21 | 9 | adantr |  |-  ( ( ph /\ C = A ) -> ( C (,) D ) C_ ( A (,) B ) ) | 
						
							| 22 |  | ioosscn |  |-  ( A (,) B ) C_ CC | 
						
							| 23 | 22 | a1i |  |-  ( ( ph /\ C = A ) -> ( A (,) B ) C_ CC ) | 
						
							| 24 |  | eqid |  |-  ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) | 
						
							| 25 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) | 
						
							| 26 | 6 | leidd |  |-  ( ph -> C <_ C ) | 
						
							| 27 | 7 | rexrd |  |-  ( ph -> D e. RR* ) | 
						
							| 28 |  | elico2 |  |-  ( ( C e. RR /\ D e. RR* ) -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) | 
						
							| 29 | 6 27 28 | syl2anc |  |-  ( ph -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) | 
						
							| 30 | 6 26 8 29 | mpbir3and |  |-  ( ph -> C e. ( C [,) D ) ) | 
						
							| 31 | 30 | adantr |  |-  ( ( ph /\ C = A ) -> C e. ( C [,) D ) ) | 
						
							| 32 | 24 | cnfldtop |  |-  ( TopOpen ` CCfld ) e. Top | 
						
							| 33 |  | ovex |  |-  ( A [,) B ) e. _V | 
						
							| 34 | 33 | a1i |  |-  ( ( ph /\ C = A ) -> ( A [,) B ) e. _V ) | 
						
							| 35 |  | resttop |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) | 
						
							| 36 | 32 34 35 | sylancr |  |-  ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) | 
						
							| 37 | 11 36 | eqeltrid |  |-  ( ( ph /\ C = A ) -> J e. Top ) | 
						
							| 38 |  | mnfxr |  |-  -oo e. RR* | 
						
							| 39 | 38 | a1i |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> -oo e. RR* ) | 
						
							| 40 | 27 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR* ) | 
						
							| 41 |  | simpr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) D ) ) | 
						
							| 42 | 1 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> A e. RR ) | 
						
							| 43 |  | elico2 |  |-  ( ( A e. RR /\ D e. RR* ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) | 
						
							| 44 | 42 40 43 | syl2anc |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) | 
						
							| 45 | 41 44 | mpbid |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. RR /\ A <_ x /\ x < D ) ) | 
						
							| 46 | 45 | simp1d |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x e. RR ) | 
						
							| 47 | 46 | mnfltd |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> -oo < x ) | 
						
							| 48 | 45 | simp3d |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x < D ) | 
						
							| 49 | 39 40 46 47 48 | eliood |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( -oo (,) D ) ) | 
						
							| 50 | 45 | simp2d |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> A <_ x ) | 
						
							| 51 | 7 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR ) | 
						
							| 52 | 2 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR ) | 
						
							| 53 | 1 2 6 7 8 9 | fourierdlem10 |  |-  ( ph -> ( A <_ C /\ D <_ B ) ) | 
						
							| 54 | 53 | simprd |  |-  ( ph -> D <_ B ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> D <_ B ) | 
						
							| 56 | 46 51 52 48 55 | ltletrd |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x < B ) | 
						
							| 57 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 58 | 57 | adantr |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR* ) | 
						
							| 59 |  | elico2 |  |-  ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) | 
						
							| 60 | 42 58 59 | syl2anc |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) | 
						
							| 61 | 46 50 56 60 | mpbir3and |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) B ) ) | 
						
							| 62 | 49 61 | elind |  |-  ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) | 
						
							| 63 |  | elinel1 |  |-  ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( -oo (,) D ) ) | 
						
							| 64 |  | elioore |  |-  ( x e. ( -oo (,) D ) -> x e. RR ) | 
						
							| 65 | 63 64 | syl |  |-  ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. RR ) | 
						
							| 66 | 65 | adantl |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. RR ) | 
						
							| 67 |  | elinel2 |  |-  ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) | 
						
							| 68 | 67 | adantl |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) | 
						
							| 69 | 1 | adantr |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A e. RR ) | 
						
							| 70 | 57 | adantr |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> B e. RR* ) | 
						
							| 71 | 69 70 59 | syl2anc |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) | 
						
							| 72 | 68 71 | mpbid |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ A <_ x /\ x < B ) ) | 
						
							| 73 | 72 | simp2d |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A <_ x ) | 
						
							| 74 | 63 | adantl |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) D ) ) | 
						
							| 75 | 27 | adantr |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> D e. RR* ) | 
						
							| 76 |  | elioo2 |  |-  ( ( -oo e. RR* /\ D e. RR* ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) | 
						
							| 77 | 38 75 76 | sylancr |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) | 
						
							| 78 | 74 77 | mpbid |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ -oo < x /\ x < D ) ) | 
						
							| 79 | 78 | simp3d |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x < D ) | 
						
							| 80 | 69 75 43 | syl2anc |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) | 
						
							| 81 | 66 73 79 80 | mpbir3and |  |-  ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) D ) ) | 
						
							| 82 | 62 81 | impbida |  |-  ( ph -> ( x e. ( A [,) D ) <-> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) ) | 
						
							| 83 | 82 | eqrdv |  |-  ( ph -> ( A [,) D ) = ( ( -oo (,) D ) i^i ( A [,) B ) ) ) | 
						
							| 84 |  | retop |  |-  ( topGen ` ran (,) ) e. Top | 
						
							| 85 | 84 | a1i |  |-  ( ph -> ( topGen ` ran (,) ) e. Top ) | 
						
							| 86 | 33 | a1i |  |-  ( ph -> ( A [,) B ) e. _V ) | 
						
							| 87 |  | iooretop |  |-  ( -oo (,) D ) e. ( topGen ` ran (,) ) | 
						
							| 88 | 87 | a1i |  |-  ( ph -> ( -oo (,) D ) e. ( topGen ` ran (,) ) ) | 
						
							| 89 |  | elrestr |  |-  ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) D ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 90 | 85 86 88 89 | syl3anc |  |-  ( ph -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 91 | 83 90 | eqeltrd |  |-  ( ph -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ C = A ) -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 93 |  | simpr |  |-  ( ( ph /\ C = A ) -> C = A ) | 
						
							| 94 | 93 | oveq1d |  |-  ( ( ph /\ C = A ) -> ( C [,) D ) = ( A [,) D ) ) | 
						
							| 95 | 11 | a1i |  |-  ( ph -> J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) | 
						
							| 96 | 32 | a1i |  |-  ( ph -> ( TopOpen ` CCfld ) e. Top ) | 
						
							| 97 |  | icossre |  |-  ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) | 
						
							| 98 | 1 57 97 | syl2anc |  |-  ( ph -> ( A [,) B ) C_ RR ) | 
						
							| 99 |  | reex |  |-  RR e. _V | 
						
							| 100 | 99 | a1i |  |-  ( ph -> RR e. _V ) | 
						
							| 101 |  | restabs |  |-  ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) | 
						
							| 102 | 96 98 100 101 | syl3anc |  |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) | 
						
							| 103 |  | tgioo4 |  |-  ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) | 
						
							| 104 | 103 | eqcomi |  |-  ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) | 
						
							| 105 | 104 | oveq1i |  |-  ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) | 
						
							| 106 | 105 | a1i |  |-  ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 107 | 95 102 106 | 3eqtr2d |  |-  ( ph -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 108 | 107 | adantr |  |-  ( ( ph /\ C = A ) -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) | 
						
							| 109 | 92 94 108 | 3eltr4d |  |-  ( ( ph /\ C = A ) -> ( C [,) D ) e. J ) | 
						
							| 110 |  | isopn3i |  |-  ( ( J e. Top /\ ( C [,) D ) e. J ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) | 
						
							| 111 | 37 109 110 | syl2anc |  |-  ( ( ph /\ C = A ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) | 
						
							| 112 | 31 111 | eleqtrrd |  |-  ( ( ph /\ C = A ) -> C e. ( ( int ` J ) ` ( C [,) D ) ) ) | 
						
							| 113 |  | id |  |-  ( C = A -> C = A ) | 
						
							| 114 | 113 | eqcomd |  |-  ( C = A -> A = C ) | 
						
							| 115 | 114 | adantl |  |-  ( ( ph /\ C = A ) -> A = C ) | 
						
							| 116 |  | uncom |  |-  ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) | 
						
							| 117 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 118 |  | snunioo |  |-  ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 119 | 117 57 3 118 | syl3anc |  |-  ( ph -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) | 
						
							| 120 | 116 119 | eqtrid |  |-  ( ph -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) | 
						
							| 121 | 120 | adantr |  |-  ( ( ph /\ C = A ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) | 
						
							| 122 | 121 | oveq2d |  |-  ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) | 
						
							| 123 | 122 11 | eqtr4di |  |-  ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = J ) | 
						
							| 124 | 123 | fveq2d |  |-  ( ( ph /\ C = A ) -> ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) = ( int ` J ) ) | 
						
							| 125 |  | uncom |  |-  ( ( C (,) D ) u. { A } ) = ( { A } u. ( C (,) D ) ) | 
						
							| 126 |  | sneq |  |-  ( C = A -> { C } = { A } ) | 
						
							| 127 | 126 | eqcomd |  |-  ( C = A -> { A } = { C } ) | 
						
							| 128 | 127 | uneq1d |  |-  ( C = A -> ( { A } u. ( C (,) D ) ) = ( { C } u. ( C (,) D ) ) ) | 
						
							| 129 | 125 128 | eqtrid |  |-  ( C = A -> ( ( C (,) D ) u. { A } ) = ( { C } u. ( C (,) D ) ) ) | 
						
							| 130 | 6 | rexrd |  |-  ( ph -> C e. RR* ) | 
						
							| 131 |  | snunioo |  |-  ( ( C e. RR* /\ D e. RR* /\ C < D ) -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) | 
						
							| 132 | 130 27 8 131 | syl3anc |  |-  ( ph -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) | 
						
							| 133 | 129 132 | sylan9eqr |  |-  ( ( ph /\ C = A ) -> ( ( C (,) D ) u. { A } ) = ( C [,) D ) ) | 
						
							| 134 | 124 133 | fveq12d |  |-  ( ( ph /\ C = A ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) = ( ( int ` J ) ` ( C [,) D ) ) ) | 
						
							| 135 | 112 115 134 | 3eltr4d |  |-  ( ( ph /\ C = A ) -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) ) | 
						
							| 136 | 20 21 23 24 25 135 | limcres |  |-  ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC A ) = ( F limCC A ) ) | 
						
							| 137 | 17 136 | eqtr2d |  |-  ( ( ph /\ C = A ) -> ( F limCC A ) = ( ( F |` ( C (,) D ) ) limCC C ) ) | 
						
							| 138 | 12 15 137 | 3eltr3d |  |-  ( ( ph /\ C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) | 
						
							| 139 |  | limcresi |  |-  ( F limCC C ) C_ ( ( F |` ( C (,) D ) ) limCC C ) | 
						
							| 140 |  | iffalse |  |-  ( -. C = A -> if ( C = A , R , ( F ` C ) ) = ( F ` C ) ) | 
						
							| 141 | 10 140 | eqtrid |  |-  ( -. C = A -> Y = ( F ` C ) ) | 
						
							| 142 | 141 | adantl |  |-  ( ( ph /\ -. C = A ) -> Y = ( F ` C ) ) | 
						
							| 143 |  | ssid |  |-  CC C_ CC | 
						
							| 144 | 143 | a1i |  |-  ( ph -> CC C_ CC ) | 
						
							| 145 |  | eqid |  |-  ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) | 
						
							| 146 |  | unicntop |  |-  CC = U. ( TopOpen ` CCfld ) | 
						
							| 147 | 146 | restid |  |-  ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) | 
						
							| 148 | 32 147 | ax-mp |  |-  ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) | 
						
							| 149 | 148 | eqcomi |  |-  ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) | 
						
							| 150 | 24 145 149 | cncfcn |  |-  ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 151 | 22 144 150 | sylancr |  |-  ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 152 | 4 151 | eleqtrd |  |-  ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) | 
						
							| 153 | 24 | cnfldtopon |  |-  ( TopOpen ` CCfld ) e. ( TopOn ` CC ) | 
						
							| 154 |  | resttopon |  |-  ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) | 
						
							| 155 | 153 22 154 | mp2an |  |-  ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) | 
						
							| 156 |  | cncnp |  |-  ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) | 
						
							| 157 | 155 153 156 | mp2an |  |-  ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) | 
						
							| 158 | 152 157 | sylib |  |-  ( ph -> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) | 
						
							| 159 | 158 | simprd |  |-  ( ph -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) | 
						
							| 160 | 159 | adantr |  |-  ( ( ph /\ -. C = A ) -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) | 
						
							| 161 | 117 | adantr |  |-  ( ( ph /\ -. C = A ) -> A e. RR* ) | 
						
							| 162 | 57 | adantr |  |-  ( ( ph /\ -. C = A ) -> B e. RR* ) | 
						
							| 163 | 6 | adantr |  |-  ( ( ph /\ -. C = A ) -> C e. RR ) | 
						
							| 164 | 1 | adantr |  |-  ( ( ph /\ -. C = A ) -> A e. RR ) | 
						
							| 165 | 53 | simpld |  |-  ( ph -> A <_ C ) | 
						
							| 166 | 165 | adantr |  |-  ( ( ph /\ -. C = A ) -> A <_ C ) | 
						
							| 167 | 113 | eqcoms |  |-  ( A = C -> C = A ) | 
						
							| 168 | 167 | necon3bi |  |-  ( -. C = A -> A =/= C ) | 
						
							| 169 | 168 | adantl |  |-  ( ( ph /\ -. C = A ) -> A =/= C ) | 
						
							| 170 | 169 | necomd |  |-  ( ( ph /\ -. C = A ) -> C =/= A ) | 
						
							| 171 | 164 163 166 170 | leneltd |  |-  ( ( ph /\ -. C = A ) -> A < C ) | 
						
							| 172 | 6 7 2 8 54 | ltletrd |  |-  ( ph -> C < B ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ph /\ -. C = A ) -> C < B ) | 
						
							| 174 | 161 162 163 171 173 | eliood |  |-  ( ( ph /\ -. C = A ) -> C e. ( A (,) B ) ) | 
						
							| 175 |  | fveq2 |  |-  ( x = C -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) | 
						
							| 176 | 175 | eleq2d |  |-  ( x = C -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) ) | 
						
							| 177 | 176 | rspccva |  |-  ( ( A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ C e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) | 
						
							| 178 | 160 174 177 | syl2anc |  |-  ( ( ph /\ -. C = A ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) | 
						
							| 179 | 24 145 | cnplimc |  |-  ( ( ( A (,) B ) C_ CC /\ C e. ( A (,) B ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) | 
						
							| 180 | 22 174 179 | sylancr |  |-  ( ( ph /\ -. C = A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) | 
						
							| 181 | 178 180 | mpbid |  |-  ( ( ph /\ -. C = A ) -> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) | 
						
							| 182 | 181 | simprd |  |-  ( ( ph /\ -. C = A ) -> ( F ` C ) e. ( F limCC C ) ) | 
						
							| 183 | 142 182 | eqeltrd |  |-  ( ( ph /\ -. C = A ) -> Y e. ( F limCC C ) ) | 
						
							| 184 | 139 183 | sselid |  |-  ( ( ph /\ -. C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) | 
						
							| 185 | 138 184 | pm2.61dan |  |-  ( ph -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |