Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem32.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem32.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem32.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem32.f |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
5 |
|
fourierdlem32.l |
|- ( ph -> R e. ( F limCC A ) ) |
6 |
|
fourierdlem32.c |
|- ( ph -> C e. RR ) |
7 |
|
fourierdlem32.d |
|- ( ph -> D e. RR ) |
8 |
|
fourierdlem32.cltd |
|- ( ph -> C < D ) |
9 |
|
fourierdlem32.ss |
|- ( ph -> ( C (,) D ) C_ ( A (,) B ) ) |
10 |
|
fourierdlem32.y |
|- Y = if ( C = A , R , ( F ` C ) ) |
11 |
|
fourierdlem32.j |
|- J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) |
12 |
5
|
adantr |
|- ( ( ph /\ C = A ) -> R e. ( F limCC A ) ) |
13 |
|
iftrue |
|- ( C = A -> if ( C = A , R , ( F ` C ) ) = R ) |
14 |
10 13
|
eqtr2id |
|- ( C = A -> R = Y ) |
15 |
14
|
adantl |
|- ( ( ph /\ C = A ) -> R = Y ) |
16 |
|
oveq2 |
|- ( C = A -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC C ) = ( ( F |` ( C (,) D ) ) limCC A ) ) |
18 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
19 |
4 18
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ C = A ) -> F : ( A (,) B ) --> CC ) |
21 |
9
|
adantr |
|- ( ( ph /\ C = A ) -> ( C (,) D ) C_ ( A (,) B ) ) |
22 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
23 |
22
|
a1i |
|- ( ( ph /\ C = A ) -> ( A (,) B ) C_ CC ) |
24 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
25 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) |
26 |
6
|
leidd |
|- ( ph -> C <_ C ) |
27 |
7
|
rexrd |
|- ( ph -> D e. RR* ) |
28 |
|
elico2 |
|- ( ( C e. RR /\ D e. RR* ) -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) |
29 |
6 27 28
|
syl2anc |
|- ( ph -> ( C e. ( C [,) D ) <-> ( C e. RR /\ C <_ C /\ C < D ) ) ) |
30 |
6 26 8 29
|
mpbir3and |
|- ( ph -> C e. ( C [,) D ) ) |
31 |
30
|
adantr |
|- ( ( ph /\ C = A ) -> C e. ( C [,) D ) ) |
32 |
24
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
33 |
|
ovex |
|- ( A [,) B ) e. _V |
34 |
33
|
a1i |
|- ( ( ph /\ C = A ) -> ( A [,) B ) e. _V ) |
35 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) |
36 |
32 34 35
|
sylancr |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) e. Top ) |
37 |
11 36
|
eqeltrid |
|- ( ( ph /\ C = A ) -> J e. Top ) |
38 |
|
mnfxr |
|- -oo e. RR* |
39 |
38
|
a1i |
|- ( ( ph /\ x e. ( A [,) D ) ) -> -oo e. RR* ) |
40 |
27
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR* ) |
41 |
|
simpr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) D ) ) |
42 |
1
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> A e. RR ) |
43 |
|
elico2 |
|- ( ( A e. RR /\ D e. RR* ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
44 |
42 40 43
|
syl2anc |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
45 |
41 44
|
mpbid |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. RR /\ A <_ x /\ x < D ) ) |
46 |
45
|
simp1d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. RR ) |
47 |
46
|
mnfltd |
|- ( ( ph /\ x e. ( A [,) D ) ) -> -oo < x ) |
48 |
45
|
simp3d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x < D ) |
49 |
39 40 46 47 48
|
eliood |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( -oo (,) D ) ) |
50 |
45
|
simp2d |
|- ( ( ph /\ x e. ( A [,) D ) ) -> A <_ x ) |
51 |
7
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D e. RR ) |
52 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR ) |
53 |
1 2 6 7 8 9
|
fourierdlem10 |
|- ( ph -> ( A <_ C /\ D <_ B ) ) |
54 |
53
|
simprd |
|- ( ph -> D <_ B ) |
55 |
54
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> D <_ B ) |
56 |
46 51 52 48 55
|
ltletrd |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x < B ) |
57 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
58 |
57
|
adantr |
|- ( ( ph /\ x e. ( A [,) D ) ) -> B e. RR* ) |
59 |
|
elico2 |
|- ( ( A e. RR /\ B e. RR* ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
60 |
42 58 59
|
syl2anc |
|- ( ( ph /\ x e. ( A [,) D ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
61 |
46 50 56 60
|
mpbir3and |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( A [,) B ) ) |
62 |
49 61
|
elind |
|- ( ( ph /\ x e. ( A [,) D ) ) -> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) |
63 |
|
elinel1 |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( -oo (,) D ) ) |
64 |
|
elioore |
|- ( x e. ( -oo (,) D ) -> x e. RR ) |
65 |
63 64
|
syl |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. RR ) |
66 |
65
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. RR ) |
67 |
|
elinel2 |
|- ( x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) -> x e. ( A [,) B ) ) |
68 |
67
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) B ) ) |
69 |
1
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A e. RR ) |
70 |
57
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> B e. RR* ) |
71 |
69 70 59
|
syl2anc |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) B ) <-> ( x e. RR /\ A <_ x /\ x < B ) ) ) |
72 |
68 71
|
mpbid |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ A <_ x /\ x < B ) ) |
73 |
72
|
simp2d |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> A <_ x ) |
74 |
63
|
adantl |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( -oo (,) D ) ) |
75 |
27
|
adantr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> D e. RR* ) |
76 |
|
elioo2 |
|- ( ( -oo e. RR* /\ D e. RR* ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) |
77 |
38 75 76
|
sylancr |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( -oo (,) D ) <-> ( x e. RR /\ -oo < x /\ x < D ) ) ) |
78 |
74 77
|
mpbid |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. RR /\ -oo < x /\ x < D ) ) |
79 |
78
|
simp3d |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x < D ) |
80 |
69 75 43
|
syl2anc |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> ( x e. ( A [,) D ) <-> ( x e. RR /\ A <_ x /\ x < D ) ) ) |
81 |
66 73 79 80
|
mpbir3and |
|- ( ( ph /\ x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) -> x e. ( A [,) D ) ) |
82 |
62 81
|
impbida |
|- ( ph -> ( x e. ( A [,) D ) <-> x e. ( ( -oo (,) D ) i^i ( A [,) B ) ) ) ) |
83 |
82
|
eqrdv |
|- ( ph -> ( A [,) D ) = ( ( -oo (,) D ) i^i ( A [,) B ) ) ) |
84 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
85 |
84
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
86 |
33
|
a1i |
|- ( ph -> ( A [,) B ) e. _V ) |
87 |
|
iooretop |
|- ( -oo (,) D ) e. ( topGen ` ran (,) ) |
88 |
87
|
a1i |
|- ( ph -> ( -oo (,) D ) e. ( topGen ` ran (,) ) ) |
89 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,) B ) e. _V /\ ( -oo (,) D ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
90 |
85 86 88 89
|
syl3anc |
|- ( ph -> ( ( -oo (,) D ) i^i ( A [,) B ) ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
91 |
83 90
|
eqeltrd |
|- ( ph -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
92 |
91
|
adantr |
|- ( ( ph /\ C = A ) -> ( A [,) D ) e. ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
93 |
|
simpr |
|- ( ( ph /\ C = A ) -> C = A ) |
94 |
93
|
oveq1d |
|- ( ( ph /\ C = A ) -> ( C [,) D ) = ( A [,) D ) ) |
95 |
11
|
a1i |
|- ( ph -> J = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
96 |
32
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
97 |
|
icossre |
|- ( ( A e. RR /\ B e. RR* ) -> ( A [,) B ) C_ RR ) |
98 |
1 57 97
|
syl2anc |
|- ( ph -> ( A [,) B ) C_ RR ) |
99 |
|
reex |
|- RR e. _V |
100 |
99
|
a1i |
|- ( ph -> RR e. _V ) |
101 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A [,) B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
102 |
96 98 100 101
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
103 |
24
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
104 |
103
|
eqcomi |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) |
105 |
104
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) |
106 |
105
|
a1i |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A [,) B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
107 |
95 102 106
|
3eqtr2d |
|- ( ph -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
108 |
107
|
adantr |
|- ( ( ph /\ C = A ) -> J = ( ( topGen ` ran (,) ) |`t ( A [,) B ) ) ) |
109 |
92 94 108
|
3eltr4d |
|- ( ( ph /\ C = A ) -> ( C [,) D ) e. J ) |
110 |
|
isopn3i |
|- ( ( J e. Top /\ ( C [,) D ) e. J ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) |
111 |
37 109 110
|
syl2anc |
|- ( ( ph /\ C = A ) -> ( ( int ` J ) ` ( C [,) D ) ) = ( C [,) D ) ) |
112 |
31 111
|
eleqtrrd |
|- ( ( ph /\ C = A ) -> C e. ( ( int ` J ) ` ( C [,) D ) ) ) |
113 |
|
id |
|- ( C = A -> C = A ) |
114 |
113
|
eqcomd |
|- ( C = A -> A = C ) |
115 |
114
|
adantl |
|- ( ( ph /\ C = A ) -> A = C ) |
116 |
|
uncom |
|- ( ( A (,) B ) u. { A } ) = ( { A } u. ( A (,) B ) ) |
117 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
118 |
|
snunioo |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
119 |
117 57 3 118
|
syl3anc |
|- ( ph -> ( { A } u. ( A (,) B ) ) = ( A [,) B ) ) |
120 |
116 119
|
syl5eq |
|- ( ph -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
121 |
120
|
adantr |
|- ( ( ph /\ C = A ) -> ( ( A (,) B ) u. { A } ) = ( A [,) B ) ) |
122 |
121
|
oveq2d |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = ( ( TopOpen ` CCfld ) |`t ( A [,) B ) ) ) |
123 |
122 11
|
eqtr4di |
|- ( ( ph /\ C = A ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) = J ) |
124 |
123
|
fveq2d |
|- ( ( ph /\ C = A ) -> ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) = ( int ` J ) ) |
125 |
|
uncom |
|- ( ( C (,) D ) u. { A } ) = ( { A } u. ( C (,) D ) ) |
126 |
|
sneq |
|- ( C = A -> { C } = { A } ) |
127 |
126
|
eqcomd |
|- ( C = A -> { A } = { C } ) |
128 |
127
|
uneq1d |
|- ( C = A -> ( { A } u. ( C (,) D ) ) = ( { C } u. ( C (,) D ) ) ) |
129 |
125 128
|
syl5eq |
|- ( C = A -> ( ( C (,) D ) u. { A } ) = ( { C } u. ( C (,) D ) ) ) |
130 |
6
|
rexrd |
|- ( ph -> C e. RR* ) |
131 |
|
snunioo |
|- ( ( C e. RR* /\ D e. RR* /\ C < D ) -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) |
132 |
130 27 8 131
|
syl3anc |
|- ( ph -> ( { C } u. ( C (,) D ) ) = ( C [,) D ) ) |
133 |
129 132
|
sylan9eqr |
|- ( ( ph /\ C = A ) -> ( ( C (,) D ) u. { A } ) = ( C [,) D ) ) |
134 |
124 133
|
fveq12d |
|- ( ( ph /\ C = A ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) = ( ( int ` J ) ` ( C [,) D ) ) ) |
135 |
112 115 134
|
3eltr4d |
|- ( ( ph /\ C = A ) -> A e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { A } ) ) ) ` ( ( C (,) D ) u. { A } ) ) ) |
136 |
20 21 23 24 25 135
|
limcres |
|- ( ( ph /\ C = A ) -> ( ( F |` ( C (,) D ) ) limCC A ) = ( F limCC A ) ) |
137 |
17 136
|
eqtr2d |
|- ( ( ph /\ C = A ) -> ( F limCC A ) = ( ( F |` ( C (,) D ) ) limCC C ) ) |
138 |
12 15 137
|
3eltr3d |
|- ( ( ph /\ C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |
139 |
|
limcresi |
|- ( F limCC C ) C_ ( ( F |` ( C (,) D ) ) limCC C ) |
140 |
|
iffalse |
|- ( -. C = A -> if ( C = A , R , ( F ` C ) ) = ( F ` C ) ) |
141 |
10 140
|
syl5eq |
|- ( -. C = A -> Y = ( F ` C ) ) |
142 |
141
|
adantl |
|- ( ( ph /\ -. C = A ) -> Y = ( F ` C ) ) |
143 |
|
ssid |
|- CC C_ CC |
144 |
143
|
a1i |
|- ( ph -> CC C_ CC ) |
145 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
146 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
147 |
146
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
148 |
32 147
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
149 |
148
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
150 |
24 145 149
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
151 |
22 144 150
|
sylancr |
|- ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
152 |
4 151
|
eleqtrd |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
153 |
24
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
154 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
155 |
153 22 154
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) |
156 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
157 |
155 153 156
|
mp2an |
|- ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
158 |
152 157
|
sylib |
|- ( ph -> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
159 |
158
|
simprd |
|- ( ph -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
160 |
159
|
adantr |
|- ( ( ph /\ -. C = A ) -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
161 |
117
|
adantr |
|- ( ( ph /\ -. C = A ) -> A e. RR* ) |
162 |
57
|
adantr |
|- ( ( ph /\ -. C = A ) -> B e. RR* ) |
163 |
6
|
adantr |
|- ( ( ph /\ -. C = A ) -> C e. RR ) |
164 |
1
|
adantr |
|- ( ( ph /\ -. C = A ) -> A e. RR ) |
165 |
53
|
simpld |
|- ( ph -> A <_ C ) |
166 |
165
|
adantr |
|- ( ( ph /\ -. C = A ) -> A <_ C ) |
167 |
113
|
eqcoms |
|- ( A = C -> C = A ) |
168 |
167
|
necon3bi |
|- ( -. C = A -> A =/= C ) |
169 |
168
|
adantl |
|- ( ( ph /\ -. C = A ) -> A =/= C ) |
170 |
169
|
necomd |
|- ( ( ph /\ -. C = A ) -> C =/= A ) |
171 |
164 163 166 170
|
leneltd |
|- ( ( ph /\ -. C = A ) -> A < C ) |
172 |
6 7 2 8 54
|
ltletrd |
|- ( ph -> C < B ) |
173 |
172
|
adantr |
|- ( ( ph /\ -. C = A ) -> C < B ) |
174 |
161 162 163 171 173
|
eliood |
|- ( ( ph /\ -. C = A ) -> C e. ( A (,) B ) ) |
175 |
|
fveq2 |
|- ( x = C -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
176 |
175
|
eleq2d |
|- ( x = C -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) ) |
177 |
176
|
rspccva |
|- ( ( A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ C e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
178 |
160 174 177
|
syl2anc |
|- ( ( ph /\ -. C = A ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) ) |
179 |
24 145
|
cnplimc |
|- ( ( ( A (,) B ) C_ CC /\ C e. ( A (,) B ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) |
180 |
22 174 179
|
sylancr |
|- ( ( ph /\ -. C = A ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` C ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) ) |
181 |
178 180
|
mpbid |
|- ( ( ph /\ -. C = A ) -> ( F : ( A (,) B ) --> CC /\ ( F ` C ) e. ( F limCC C ) ) ) |
182 |
181
|
simprd |
|- ( ( ph /\ -. C = A ) -> ( F ` C ) e. ( F limCC C ) ) |
183 |
142 182
|
eqeltrd |
|- ( ( ph /\ -. C = A ) -> Y e. ( F limCC C ) ) |
184 |
139 183
|
sselid |
|- ( ( ph /\ -. C = A ) -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |
185 |
138 184
|
pm2.61dan |
|- ( ph -> Y e. ( ( F |` ( C (,) D ) ) limCC C ) ) |