Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem33.1 |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem33.2 |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem33.3 |
|- ( ph -> A < B ) |
4 |
|
fourierdlem33.4 |
|- ( ph -> F e. ( ( A (,) B ) -cn-> CC ) ) |
5 |
|
fourierdlem33.5 |
|- ( ph -> L e. ( F limCC B ) ) |
6 |
|
fourierdlem33.6 |
|- ( ph -> C e. RR ) |
7 |
|
fourierdlem33.7 |
|- ( ph -> D e. RR ) |
8 |
|
fourierdlem33.8 |
|- ( ph -> C < D ) |
9 |
|
fourierdlem33.ss |
|- ( ph -> ( C (,) D ) C_ ( A (,) B ) ) |
10 |
|
fourierdlem33.y |
|- Y = if ( D = B , L , ( F ` D ) ) |
11 |
|
fourierdlem33.10 |
|- J = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) |
12 |
5
|
adantr |
|- ( ( ph /\ D = B ) -> L e. ( F limCC B ) ) |
13 |
|
iftrue |
|- ( D = B -> if ( D = B , L , ( F ` D ) ) = L ) |
14 |
10 13
|
eqtr2id |
|- ( D = B -> L = Y ) |
15 |
14
|
adantl |
|- ( ( ph /\ D = B ) -> L = Y ) |
16 |
|
oveq2 |
|- ( D = B -> ( ( F |` ( C (,) D ) ) limCC D ) = ( ( F |` ( C (,) D ) ) limCC B ) ) |
17 |
16
|
adantl |
|- ( ( ph /\ D = B ) -> ( ( F |` ( C (,) D ) ) limCC D ) = ( ( F |` ( C (,) D ) ) limCC B ) ) |
18 |
|
cncff |
|- ( F e. ( ( A (,) B ) -cn-> CC ) -> F : ( A (,) B ) --> CC ) |
19 |
4 18
|
syl |
|- ( ph -> F : ( A (,) B ) --> CC ) |
20 |
19
|
adantr |
|- ( ( ph /\ D = B ) -> F : ( A (,) B ) --> CC ) |
21 |
9
|
adantr |
|- ( ( ph /\ D = B ) -> ( C (,) D ) C_ ( A (,) B ) ) |
22 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
23 |
22
|
a1i |
|- ( ( ph /\ D = B ) -> ( A (,) B ) C_ CC ) |
24 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
25 |
7
|
leidd |
|- ( ph -> D <_ D ) |
26 |
6
|
rexrd |
|- ( ph -> C e. RR* ) |
27 |
|
elioc2 |
|- ( ( C e. RR* /\ D e. RR ) -> ( D e. ( C (,] D ) <-> ( D e. RR /\ C < D /\ D <_ D ) ) ) |
28 |
26 7 27
|
syl2anc |
|- ( ph -> ( D e. ( C (,] D ) <-> ( D e. RR /\ C < D /\ D <_ D ) ) ) |
29 |
7 8 25 28
|
mpbir3and |
|- ( ph -> D e. ( C (,] D ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ D = B ) -> D e. ( C (,] D ) ) |
31 |
|
eqcom |
|- ( D = B <-> B = D ) |
32 |
31
|
biimpi |
|- ( D = B -> B = D ) |
33 |
32
|
adantl |
|- ( ( ph /\ D = B ) -> B = D ) |
34 |
24
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
35 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
36 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
37 |
|
ioounsn |
|- ( ( A e. RR* /\ B e. RR* /\ A < B ) -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
38 |
35 36 3 37
|
syl3anc |
|- ( ph -> ( ( A (,) B ) u. { B } ) = ( A (,] B ) ) |
39 |
|
ovex |
|- ( A (,] B ) e. _V |
40 |
39
|
a1i |
|- ( ph -> ( A (,] B ) e. _V ) |
41 |
38 40
|
eqeltrd |
|- ( ph -> ( ( A (,) B ) u. { B } ) e. _V ) |
42 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( A (,) B ) u. { B } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
43 |
34 41 42
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) e. Top ) |
44 |
11 43
|
eqeltrid |
|- ( ph -> J e. Top ) |
45 |
44
|
adantr |
|- ( ( ph /\ D = B ) -> J e. Top ) |
46 |
|
oveq2 |
|- ( D = B -> ( C (,] D ) = ( C (,] B ) ) |
47 |
46
|
adantl |
|- ( ( ph /\ D = B ) -> ( C (,] D ) = ( C (,] B ) ) |
48 |
26
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR* ) |
49 |
|
pnfxr |
|- +oo e. RR* |
50 |
49
|
a1i |
|- ( ( ph /\ x e. ( C (,] B ) ) -> +oo e. RR* ) |
51 |
|
simpr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,] B ) ) |
52 |
2
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> B e. RR ) |
53 |
|
elioc2 |
|- ( ( C e. RR* /\ B e. RR ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) |
54 |
48 52 53
|
syl2anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) |
55 |
51 54
|
mpbid |
|- ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. RR /\ C < x /\ x <_ B ) ) |
56 |
55
|
simp1d |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. RR ) |
57 |
55
|
simp2d |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C < x ) |
58 |
56
|
ltpnfd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x < +oo ) |
59 |
48 50 56 57 58
|
eliood |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( C (,) +oo ) ) |
60 |
1
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR ) |
61 |
6
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> C e. RR ) |
62 |
1 2 6 7 8 9
|
fourierdlem10 |
|- ( ph -> ( A <_ C /\ D <_ B ) ) |
63 |
62
|
simpld |
|- ( ph -> A <_ C ) |
64 |
63
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A <_ C ) |
65 |
60 61 56 64 57
|
lelttrd |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A < x ) |
66 |
55
|
simp3d |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x <_ B ) |
67 |
35
|
adantr |
|- ( ( ph /\ x e. ( C (,] B ) ) -> A e. RR* ) |
68 |
|
elioc2 |
|- ( ( A e. RR* /\ B e. RR ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
69 |
67 52 68
|
syl2anc |
|- ( ( ph /\ x e. ( C (,] B ) ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
70 |
56 65 66 69
|
mpbir3and |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( A (,] B ) ) |
71 |
59 70
|
elind |
|- ( ( ph /\ x e. ( C (,] B ) ) -> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) |
72 |
|
elinel1 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( C (,) +oo ) ) |
73 |
|
elioore |
|- ( x e. ( C (,) +oo ) -> x e. RR ) |
74 |
72 73
|
syl |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. RR ) |
75 |
74
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. RR ) |
76 |
26
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C e. RR* ) |
77 |
49
|
a1i |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> +oo e. RR* ) |
78 |
72
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,) +oo ) ) |
79 |
|
ioogtlb |
|- ( ( C e. RR* /\ +oo e. RR* /\ x e. ( C (,) +oo ) ) -> C < x ) |
80 |
76 77 78 79
|
syl3anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> C < x ) |
81 |
|
elinel2 |
|- ( x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) -> x e. ( A (,] B ) ) |
82 |
81
|
adantl |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( A (,] B ) ) |
83 |
35
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> A e. RR* ) |
84 |
2
|
adantr |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> B e. RR ) |
85 |
83 84 68
|
syl2anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. ( A (,] B ) <-> ( x e. RR /\ A < x /\ x <_ B ) ) ) |
86 |
82 85
|
mpbid |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. RR /\ A < x /\ x <_ B ) ) |
87 |
86
|
simp3d |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x <_ B ) |
88 |
76 84 53
|
syl2anc |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> ( x e. ( C (,] B ) <-> ( x e. RR /\ C < x /\ x <_ B ) ) ) |
89 |
75 80 87 88
|
mpbir3and |
|- ( ( ph /\ x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) -> x e. ( C (,] B ) ) |
90 |
71 89
|
impbida |
|- ( ph -> ( x e. ( C (,] B ) <-> x e. ( ( C (,) +oo ) i^i ( A (,] B ) ) ) ) |
91 |
90
|
eqrdv |
|- ( ph -> ( C (,] B ) = ( ( C (,) +oo ) i^i ( A (,] B ) ) ) |
92 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
93 |
92
|
a1i |
|- ( ph -> ( topGen ` ran (,) ) e. Top ) |
94 |
|
iooretop |
|- ( C (,) +oo ) e. ( topGen ` ran (,) ) |
95 |
94
|
a1i |
|- ( ph -> ( C (,) +oo ) e. ( topGen ` ran (,) ) ) |
96 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( A (,] B ) e. _V /\ ( C (,) +oo ) e. ( topGen ` ran (,) ) ) -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
97 |
93 40 95 96
|
syl3anc |
|- ( ph -> ( ( C (,) +oo ) i^i ( A (,] B ) ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
98 |
91 97
|
eqeltrd |
|- ( ph -> ( C (,] B ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
99 |
98
|
adantr |
|- ( ( ph /\ D = B ) -> ( C (,] B ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
100 |
47 99
|
eqeltrd |
|- ( ( ph /\ D = B ) -> ( C (,] D ) e. ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
101 |
11
|
a1i |
|- ( ph -> J = ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) ) |
102 |
38
|
oveq2d |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( ( A (,) B ) u. { B } ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) |
103 |
34
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. Top ) |
104 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
105 |
35 2 104
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
106 |
|
reex |
|- RR e. _V |
107 |
106
|
a1i |
|- ( ph -> RR e. _V ) |
108 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( A (,] B ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) |
109 |
103 105 107 108
|
syl3anc |
|- ( ph -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) ) |
110 |
24
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
111 |
110
|
eqcomi |
|- ( ( TopOpen ` CCfld ) |`t RR ) = ( topGen ` ran (,) ) |
112 |
111
|
oveq1i |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( A (,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) |
113 |
109 112
|
eqtr3di |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) ) |
114 |
101 102 113
|
3eqtrrd |
|- ( ph -> ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) = J ) |
115 |
114
|
adantr |
|- ( ( ph /\ D = B ) -> ( ( topGen ` ran (,) ) |`t ( A (,] B ) ) = J ) |
116 |
100 115
|
eleqtrd |
|- ( ( ph /\ D = B ) -> ( C (,] D ) e. J ) |
117 |
|
isopn3i |
|- ( ( J e. Top /\ ( C (,] D ) e. J ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( C (,] D ) ) |
118 |
45 116 117
|
syl2anc |
|- ( ( ph /\ D = B ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( C (,] D ) ) |
119 |
30 33 118
|
3eltr4d |
|- ( ( ph /\ D = B ) -> B e. ( ( int ` J ) ` ( C (,] D ) ) ) |
120 |
|
sneq |
|- ( D = B -> { D } = { B } ) |
121 |
120
|
eqcomd |
|- ( D = B -> { B } = { D } ) |
122 |
121
|
uneq2d |
|- ( D = B -> ( ( C (,) D ) u. { B } ) = ( ( C (,) D ) u. { D } ) ) |
123 |
122
|
adantl |
|- ( ( ph /\ D = B ) -> ( ( C (,) D ) u. { B } ) = ( ( C (,) D ) u. { D } ) ) |
124 |
7
|
rexrd |
|- ( ph -> D e. RR* ) |
125 |
|
ioounsn |
|- ( ( C e. RR* /\ D e. RR* /\ C < D ) -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) |
126 |
26 124 8 125
|
syl3anc |
|- ( ph -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) |
127 |
126
|
adantr |
|- ( ( ph /\ D = B ) -> ( ( C (,) D ) u. { D } ) = ( C (,] D ) ) |
128 |
123 127
|
eqtr2d |
|- ( ( ph /\ D = B ) -> ( C (,] D ) = ( ( C (,) D ) u. { B } ) ) |
129 |
128
|
fveq2d |
|- ( ( ph /\ D = B ) -> ( ( int ` J ) ` ( C (,] D ) ) = ( ( int ` J ) ` ( ( C (,) D ) u. { B } ) ) ) |
130 |
119 129
|
eleqtrd |
|- ( ( ph /\ D = B ) -> B e. ( ( int ` J ) ` ( ( C (,) D ) u. { B } ) ) ) |
131 |
20 21 23 24 11 130
|
limcres |
|- ( ( ph /\ D = B ) -> ( ( F |` ( C (,) D ) ) limCC B ) = ( F limCC B ) ) |
132 |
17 131
|
eqtr2d |
|- ( ( ph /\ D = B ) -> ( F limCC B ) = ( ( F |` ( C (,) D ) ) limCC D ) ) |
133 |
12 15 132
|
3eltr3d |
|- ( ( ph /\ D = B ) -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) |
134 |
|
limcresi |
|- ( F limCC D ) C_ ( ( F |` ( C (,) D ) ) limCC D ) |
135 |
|
iffalse |
|- ( -. D = B -> if ( D = B , L , ( F ` D ) ) = ( F ` D ) ) |
136 |
10 135
|
eqtrid |
|- ( -. D = B -> Y = ( F ` D ) ) |
137 |
136
|
adantl |
|- ( ( ph /\ -. D = B ) -> Y = ( F ` D ) ) |
138 |
|
ssid |
|- CC C_ CC |
139 |
138
|
a1i |
|- ( ph -> CC C_ CC ) |
140 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) = ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) |
141 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
142 |
141
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
143 |
34 142
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
144 |
143
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
145 |
24 140 144
|
cncfcn |
|- ( ( ( A (,) B ) C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
146 |
22 139 145
|
sylancr |
|- ( ph -> ( ( A (,) B ) -cn-> CC ) = ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
147 |
4 146
|
eleqtrd |
|- ( ph -> F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) ) |
148 |
24
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
149 |
22
|
a1i |
|- ( ph -> ( A (,) B ) C_ CC ) |
150 |
|
resttopon |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ( A (,) B ) C_ CC ) -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
151 |
148 149 150
|
sylancr |
|- ( ph -> ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) ) |
152 |
148
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
153 |
|
cncnp |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) e. ( TopOn ` ( A (,) B ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
154 |
151 152 153
|
syl2anc |
|- ( ph -> ( F e. ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) Cn ( TopOpen ` CCfld ) ) <-> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
155 |
147 154
|
mpbid |
|- ( ph -> ( F : ( A (,) B ) --> CC /\ A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
156 |
155
|
simprd |
|- ( ph -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
157 |
156
|
adantr |
|- ( ( ph /\ -. D = B ) -> A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
158 |
35
|
adantr |
|- ( ( ph /\ -. D = B ) -> A e. RR* ) |
159 |
36
|
adantr |
|- ( ( ph /\ -. D = B ) -> B e. RR* ) |
160 |
7
|
adantr |
|- ( ( ph /\ -. D = B ) -> D e. RR ) |
161 |
1 6 7 63 8
|
lelttrd |
|- ( ph -> A < D ) |
162 |
161
|
adantr |
|- ( ( ph /\ -. D = B ) -> A < D ) |
163 |
2
|
adantr |
|- ( ( ph /\ -. D = B ) -> B e. RR ) |
164 |
62
|
simprd |
|- ( ph -> D <_ B ) |
165 |
164
|
adantr |
|- ( ( ph /\ -. D = B ) -> D <_ B ) |
166 |
|
neqne |
|- ( -. D = B -> D =/= B ) |
167 |
166
|
necomd |
|- ( -. D = B -> B =/= D ) |
168 |
167
|
adantl |
|- ( ( ph /\ -. D = B ) -> B =/= D ) |
169 |
160 163 165 168
|
leneltd |
|- ( ( ph /\ -. D = B ) -> D < B ) |
170 |
158 159 160 162 169
|
eliood |
|- ( ( ph /\ -. D = B ) -> D e. ( A (,) B ) ) |
171 |
|
fveq2 |
|- ( x = D -> ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) |
172 |
171
|
eleq2d |
|- ( x = D -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) ) |
173 |
172
|
rspccva |
|- ( ( A. x e. ( A (,) B ) F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` x ) /\ D e. ( A (,) B ) ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) |
174 |
157 170 173
|
syl2anc |
|- ( ( ph /\ -. D = B ) -> F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) ) |
175 |
24 140
|
cnplimc |
|- ( ( ( A (,) B ) C_ CC /\ D e. ( A (,) B ) ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) ) |
176 |
22 170 175
|
sylancr |
|- ( ( ph /\ -. D = B ) -> ( F e. ( ( ( ( TopOpen ` CCfld ) |`t ( A (,) B ) ) CnP ( TopOpen ` CCfld ) ) ` D ) <-> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) ) |
177 |
174 176
|
mpbid |
|- ( ( ph /\ -. D = B ) -> ( F : ( A (,) B ) --> CC /\ ( F ` D ) e. ( F limCC D ) ) ) |
178 |
177
|
simprd |
|- ( ( ph /\ -. D = B ) -> ( F ` D ) e. ( F limCC D ) ) |
179 |
137 178
|
eqeltrd |
|- ( ( ph /\ -. D = B ) -> Y e. ( F limCC D ) ) |
180 |
134 179
|
sselid |
|- ( ( ph /\ -. D = B ) -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) |
181 |
133 180
|
pm2.61dan |
|- ( ph -> Y e. ( ( F |` ( C (,) D ) ) limCC D ) ) |