| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem34.p |  |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
							| 2 |  | fourierdlem34.m |  |-  ( ph -> M e. NN ) | 
						
							| 3 |  | fourierdlem34.q |  |-  ( ph -> Q e. ( P ` M ) ) | 
						
							| 4 | 1 | fourierdlem2 |  |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) | 
						
							| 6 | 3 5 | mpbid |  |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) | 
						
							| 7 | 6 | simpld |  |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) | 
						
							| 8 |  | elmapi |  |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> Q : ( 0 ... M ) --> RR ) | 
						
							| 10 |  | simplr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) /\ -. i = j ) -> ( Q ` i ) = ( Q ` j ) ) | 
						
							| 11 | 9 | ffvelcdmda |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) | 
						
							| 12 | 11 | ad2antrr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) e. RR ) | 
						
							| 13 | 9 | ffvelcdmda |  |-  ( ( ph /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) | 
						
							| 14 | 13 | ad4ant14 |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) | 
						
							| 15 | 14 | adantllr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) | 
						
							| 16 |  | eleq1w |  |-  ( i = k -> ( i e. ( 0 ..^ M ) <-> k e. ( 0 ..^ M ) ) ) | 
						
							| 17 | 16 | anbi2d |  |-  ( i = k -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ k e. ( 0 ..^ M ) ) ) ) | 
						
							| 18 |  | fveq2 |  |-  ( i = k -> ( Q ` i ) = ( Q ` k ) ) | 
						
							| 19 |  | oveq1 |  |-  ( i = k -> ( i + 1 ) = ( k + 1 ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( i = k -> ( Q ` ( i + 1 ) ) = ( Q ` ( k + 1 ) ) ) | 
						
							| 21 | 18 20 | breq12d |  |-  ( i = k -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) ) | 
						
							| 22 | 17 21 | imbi12d |  |-  ( i = k -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) ) ) | 
						
							| 23 | 6 | simprrd |  |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 24 | 23 | r19.21bi |  |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) | 
						
							| 25 | 22 24 | chvarvv |  |-  ( ( ph /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) | 
						
							| 26 | 25 | ad4ant14 |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) | 
						
							| 27 | 26 | adantllr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) | 
						
							| 28 |  | simpllr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i e. ( 0 ... M ) ) | 
						
							| 29 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> j e. ( 0 ... M ) ) | 
						
							| 30 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> i < j ) | 
						
							| 31 | 15 27 28 29 30 | monoords |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) < ( Q ` j ) ) | 
						
							| 32 | 12 31 | ltned |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> ( Q ` i ) =/= ( Q ` j ) ) | 
						
							| 33 | 32 | neneqd |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 34 | 33 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 35 |  | simpll |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) ) | 
						
							| 36 |  | elfzelz |  |-  ( j e. ( 0 ... M ) -> j e. ZZ ) | 
						
							| 37 | 36 | zred |  |-  ( j e. ( 0 ... M ) -> j e. RR ) | 
						
							| 38 | 37 | ad3antlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j e. RR ) | 
						
							| 39 |  | elfzelz |  |-  ( i e. ( 0 ... M ) -> i e. ZZ ) | 
						
							| 40 | 39 | zred |  |-  ( i e. ( 0 ... M ) -> i e. RR ) | 
						
							| 41 | 40 | ad4antlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> i e. RR ) | 
						
							| 42 |  | neqne |  |-  ( -. i = j -> i =/= j ) | 
						
							| 43 | 42 | necomd |  |-  ( -. i = j -> j =/= i ) | 
						
							| 44 | 43 | ad2antlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j =/= i ) | 
						
							| 45 |  | simpr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> -. i < j ) | 
						
							| 46 | 38 41 44 45 | lttri5d |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> j < i ) | 
						
							| 47 | 9 | ffvelcdmda |  |-  ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) e. RR ) | 
						
							| 49 | 48 | adantllr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) e. RR ) | 
						
							| 50 |  | simp-4l |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ... M ) ) -> ph ) | 
						
							| 51 | 50 13 | sylancom |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ... M ) ) -> ( Q ` k ) e. RR ) | 
						
							| 52 |  | simp-4l |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ..^ M ) ) -> ph ) | 
						
							| 53 | 52 25 | sylancom |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) /\ k e. ( 0 ..^ M ) ) -> ( Q ` k ) < ( Q ` ( k + 1 ) ) ) | 
						
							| 54 |  | simplr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> j e. ( 0 ... M ) ) | 
						
							| 55 |  | simpllr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> i e. ( 0 ... M ) ) | 
						
							| 56 |  | simpr |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> j < i ) | 
						
							| 57 | 51 53 54 55 56 | monoords |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` j ) < ( Q ` i ) ) | 
						
							| 58 | 49 57 | gtned |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> ( Q ` i ) =/= ( Q ` j ) ) | 
						
							| 59 | 58 | neneqd |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ j < i ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 60 | 35 46 59 | syl2anc |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) /\ -. i < j ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 61 | 34 60 | pm2.61dan |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ -. i = j ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 62 | 61 | adantlr |  |-  ( ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) /\ -. i = j ) -> -. ( Q ` i ) = ( Q ` j ) ) | 
						
							| 63 | 10 62 | condan |  |-  ( ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` i ) = ( Q ` j ) ) -> i = j ) | 
						
							| 64 | 63 | ex |  |-  ( ( ( ph /\ i e. ( 0 ... M ) ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) | 
						
							| 65 | 64 | ralrimiva |  |-  ( ( ph /\ i e. ( 0 ... M ) ) -> A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) | 
						
							| 66 | 65 | ralrimiva |  |-  ( ph -> A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) | 
						
							| 67 |  | dff13 |  |-  ( Q : ( 0 ... M ) -1-1-> RR <-> ( Q : ( 0 ... M ) --> RR /\ A. i e. ( 0 ... M ) A. j e. ( 0 ... M ) ( ( Q ` i ) = ( Q ` j ) -> i = j ) ) ) | 
						
							| 68 | 9 66 67 | sylanbrc |  |-  ( ph -> Q : ( 0 ... M ) -1-1-> RR ) |