| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fourierdlem35.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | fourierdlem35.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | fourierdlem35.altb |  |-  ( ph -> A < B ) | 
						
							| 4 |  | fourierdlem35.t |  |-  T = ( B - A ) | 
						
							| 5 |  | fourierdlem35.5 |  |-  ( ph -> X e. RR ) | 
						
							| 6 |  | fourierdlem35.i |  |-  ( ph -> I e. ZZ ) | 
						
							| 7 |  | fourierdlem35.j |  |-  ( ph -> J e. ZZ ) | 
						
							| 8 |  | fourierdlem35.iel |  |-  ( ph -> ( X + ( I x. T ) ) e. ( A (,] B ) ) | 
						
							| 9 |  | fourierdlem35.jel |  |-  ( ph -> ( X + ( J x. T ) ) e. ( A (,] B ) ) | 
						
							| 10 |  | neqne |  |-  ( -. I = J -> I =/= J ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ I < J ) -> A e. RR ) | 
						
							| 12 | 2 | adantr |  |-  ( ( ph /\ I < J ) -> B e. RR ) | 
						
							| 13 | 3 | adantr |  |-  ( ( ph /\ I < J ) -> A < B ) | 
						
							| 14 | 5 | adantr |  |-  ( ( ph /\ I < J ) -> X e. RR ) | 
						
							| 15 | 6 | adantr |  |-  ( ( ph /\ I < J ) -> I e. ZZ ) | 
						
							| 16 | 7 | adantr |  |-  ( ( ph /\ I < J ) -> J e. ZZ ) | 
						
							| 17 |  | simpr |  |-  ( ( ph /\ I < J ) -> I < J ) | 
						
							| 18 |  | iocssicc |  |-  ( A (,] B ) C_ ( A [,] B ) | 
						
							| 19 | 18 8 | sselid |  |-  ( ph -> ( X + ( I x. T ) ) e. ( A [,] B ) ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ I < J ) -> ( X + ( I x. T ) ) e. ( A [,] B ) ) | 
						
							| 21 | 18 9 | sselid |  |-  ( ph -> ( X + ( J x. T ) ) e. ( A [,] B ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ph /\ I < J ) -> ( X + ( J x. T ) ) e. ( A [,] B ) ) | 
						
							| 23 | 11 12 13 4 14 15 16 17 20 22 | fourierdlem6 |  |-  ( ( ph /\ I < J ) -> J = ( I + 1 ) ) | 
						
							| 24 | 23 | orcd |  |-  ( ( ph /\ I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 25 | 24 | adantlr |  |-  ( ( ( ph /\ I =/= J ) /\ I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 26 |  | simpll |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> ph ) | 
						
							| 27 | 7 | zred |  |-  ( ph -> J e. RR ) | 
						
							| 28 | 26 27 | syl |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J e. RR ) | 
						
							| 29 | 6 | zred |  |-  ( ph -> I e. RR ) | 
						
							| 30 | 26 29 | syl |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> I e. RR ) | 
						
							| 31 |  | id |  |-  ( I =/= J -> I =/= J ) | 
						
							| 32 | 31 | necomd |  |-  ( I =/= J -> J =/= I ) | 
						
							| 33 | 32 | ad2antlr |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J =/= I ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> -. I < J ) | 
						
							| 35 | 28 30 33 34 | lttri5d |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> J < I ) | 
						
							| 36 | 1 | adantr |  |-  ( ( ph /\ J < I ) -> A e. RR ) | 
						
							| 37 | 2 | adantr |  |-  ( ( ph /\ J < I ) -> B e. RR ) | 
						
							| 38 | 3 | adantr |  |-  ( ( ph /\ J < I ) -> A < B ) | 
						
							| 39 | 5 | adantr |  |-  ( ( ph /\ J < I ) -> X e. RR ) | 
						
							| 40 | 7 | adantr |  |-  ( ( ph /\ J < I ) -> J e. ZZ ) | 
						
							| 41 | 6 | adantr |  |-  ( ( ph /\ J < I ) -> I e. ZZ ) | 
						
							| 42 |  | simpr |  |-  ( ( ph /\ J < I ) -> J < I ) | 
						
							| 43 | 21 | adantr |  |-  ( ( ph /\ J < I ) -> ( X + ( J x. T ) ) e. ( A [,] B ) ) | 
						
							| 44 | 19 | adantr |  |-  ( ( ph /\ J < I ) -> ( X + ( I x. T ) ) e. ( A [,] B ) ) | 
						
							| 45 | 36 37 38 4 39 40 41 42 43 44 | fourierdlem6 |  |-  ( ( ph /\ J < I ) -> I = ( J + 1 ) ) | 
						
							| 46 | 45 | olcd |  |-  ( ( ph /\ J < I ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 47 | 26 35 46 | syl2anc |  |-  ( ( ( ph /\ I =/= J ) /\ -. I < J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 48 | 25 47 | pm2.61dan |  |-  ( ( ph /\ I =/= J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 49 | 10 48 | sylan2 |  |-  ( ( ph /\ -. I = J ) -> ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 50 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 51 | 2 | rexrd |  |-  ( ph -> B e. RR* ) | 
						
							| 52 |  | iocleub |  |-  ( ( A e. RR* /\ B e. RR* /\ ( X + ( J x. T ) ) e. ( A (,] B ) ) -> ( X + ( J x. T ) ) <_ B ) | 
						
							| 53 | 50 51 9 52 | syl3anc |  |-  ( ph -> ( X + ( J x. T ) ) <_ B ) | 
						
							| 54 | 53 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) <_ B ) | 
						
							| 55 | 1 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> A e. RR ) | 
						
							| 56 | 2 1 | resubcld |  |-  ( ph -> ( B - A ) e. RR ) | 
						
							| 57 | 4 56 | eqeltrid |  |-  ( ph -> T e. RR ) | 
						
							| 58 | 29 57 | remulcld |  |-  ( ph -> ( I x. T ) e. RR ) | 
						
							| 59 | 5 58 | readdcld |  |-  ( ph -> ( X + ( I x. T ) ) e. RR ) | 
						
							| 60 | 59 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( I x. T ) ) e. RR ) | 
						
							| 61 | 57 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> T e. RR ) | 
						
							| 62 |  | iocgtlb |  |-  ( ( A e. RR* /\ B e. RR* /\ ( X + ( I x. T ) ) e. ( A (,] B ) ) -> A < ( X + ( I x. T ) ) ) | 
						
							| 63 | 50 51 8 62 | syl3anc |  |-  ( ph -> A < ( X + ( I x. T ) ) ) | 
						
							| 64 | 63 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> A < ( X + ( I x. T ) ) ) | 
						
							| 65 | 55 60 61 64 | ltadd1dd |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( A + T ) < ( ( X + ( I x. T ) ) + T ) ) | 
						
							| 66 | 4 | eqcomi |  |-  ( B - A ) = T | 
						
							| 67 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 68 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 69 | 57 | recnd |  |-  ( ph -> T e. CC ) | 
						
							| 70 | 67 68 69 | subaddd |  |-  ( ph -> ( ( B - A ) = T <-> ( A + T ) = B ) ) | 
						
							| 71 | 66 70 | mpbii |  |-  ( ph -> ( A + T ) = B ) | 
						
							| 72 | 71 | eqcomd |  |-  ( ph -> B = ( A + T ) ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> B = ( A + T ) ) | 
						
							| 74 | 5 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 75 | 58 | recnd |  |-  ( ph -> ( I x. T ) e. CC ) | 
						
							| 76 | 74 75 69 | addassd |  |-  ( ph -> ( ( X + ( I x. T ) ) + T ) = ( X + ( ( I x. T ) + T ) ) ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( ( X + ( I x. T ) ) + T ) = ( X + ( ( I x. T ) + T ) ) ) | 
						
							| 78 | 29 | recnd |  |-  ( ph -> I e. CC ) | 
						
							| 79 | 78 69 | adddirp1d |  |-  ( ph -> ( ( I + 1 ) x. T ) = ( ( I x. T ) + T ) ) | 
						
							| 80 | 79 | eqcomd |  |-  ( ph -> ( ( I x. T ) + T ) = ( ( I + 1 ) x. T ) ) | 
						
							| 81 | 80 | oveq2d |  |-  ( ph -> ( X + ( ( I x. T ) + T ) ) = ( X + ( ( I + 1 ) x. T ) ) ) | 
						
							| 82 | 81 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( ( I x. T ) + T ) ) = ( X + ( ( I + 1 ) x. T ) ) ) | 
						
							| 83 |  | oveq1 |  |-  ( J = ( I + 1 ) -> ( J x. T ) = ( ( I + 1 ) x. T ) ) | 
						
							| 84 | 83 | eqcomd |  |-  ( J = ( I + 1 ) -> ( ( I + 1 ) x. T ) = ( J x. T ) ) | 
						
							| 85 | 84 | oveq2d |  |-  ( J = ( I + 1 ) -> ( X + ( ( I + 1 ) x. T ) ) = ( X + ( J x. T ) ) ) | 
						
							| 86 | 85 | adantl |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( ( I + 1 ) x. T ) ) = ( X + ( J x. T ) ) ) | 
						
							| 87 | 77 82 86 | 3eqtrrd |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) = ( ( X + ( I x. T ) ) + T ) ) | 
						
							| 88 | 65 73 87 | 3brtr4d |  |-  ( ( ph /\ J = ( I + 1 ) ) -> B < ( X + ( J x. T ) ) ) | 
						
							| 89 | 2 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> B e. RR ) | 
						
							| 90 | 27 57 | remulcld |  |-  ( ph -> ( J x. T ) e. RR ) | 
						
							| 91 | 5 90 | readdcld |  |-  ( ph -> ( X + ( J x. T ) ) e. RR ) | 
						
							| 92 | 91 | adantr |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( X + ( J x. T ) ) e. RR ) | 
						
							| 93 | 89 92 | ltnled |  |-  ( ( ph /\ J = ( I + 1 ) ) -> ( B < ( X + ( J x. T ) ) <-> -. ( X + ( J x. T ) ) <_ B ) ) | 
						
							| 94 | 88 93 | mpbid |  |-  ( ( ph /\ J = ( I + 1 ) ) -> -. ( X + ( J x. T ) ) <_ B ) | 
						
							| 95 | 54 94 | pm2.65da |  |-  ( ph -> -. J = ( I + 1 ) ) | 
						
							| 96 |  | iocleub |  |-  ( ( A e. RR* /\ B e. RR* /\ ( X + ( I x. T ) ) e. ( A (,] B ) ) -> ( X + ( I x. T ) ) <_ B ) | 
						
							| 97 | 50 51 8 96 | syl3anc |  |-  ( ph -> ( X + ( I x. T ) ) <_ B ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) <_ B ) | 
						
							| 99 | 1 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> A e. RR ) | 
						
							| 100 | 91 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( J x. T ) ) e. RR ) | 
						
							| 101 | 57 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> T e. RR ) | 
						
							| 102 |  | iocgtlb |  |-  ( ( A e. RR* /\ B e. RR* /\ ( X + ( J x. T ) ) e. ( A (,] B ) ) -> A < ( X + ( J x. T ) ) ) | 
						
							| 103 | 50 51 9 102 | syl3anc |  |-  ( ph -> A < ( X + ( J x. T ) ) ) | 
						
							| 104 | 103 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> A < ( X + ( J x. T ) ) ) | 
						
							| 105 | 99 100 101 104 | ltadd1dd |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( A + T ) < ( ( X + ( J x. T ) ) + T ) ) | 
						
							| 106 | 72 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> B = ( A + T ) ) | 
						
							| 107 | 90 | recnd |  |-  ( ph -> ( J x. T ) e. CC ) | 
						
							| 108 | 74 107 69 | addassd |  |-  ( ph -> ( ( X + ( J x. T ) ) + T ) = ( X + ( ( J x. T ) + T ) ) ) | 
						
							| 109 | 108 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( ( X + ( J x. T ) ) + T ) = ( X + ( ( J x. T ) + T ) ) ) | 
						
							| 110 | 27 | recnd |  |-  ( ph -> J e. CC ) | 
						
							| 111 | 110 69 | adddirp1d |  |-  ( ph -> ( ( J + 1 ) x. T ) = ( ( J x. T ) + T ) ) | 
						
							| 112 | 111 | eqcomd |  |-  ( ph -> ( ( J x. T ) + T ) = ( ( J + 1 ) x. T ) ) | 
						
							| 113 | 112 | oveq2d |  |-  ( ph -> ( X + ( ( J x. T ) + T ) ) = ( X + ( ( J + 1 ) x. T ) ) ) | 
						
							| 114 | 113 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( ( J x. T ) + T ) ) = ( X + ( ( J + 1 ) x. T ) ) ) | 
						
							| 115 |  | oveq1 |  |-  ( I = ( J + 1 ) -> ( I x. T ) = ( ( J + 1 ) x. T ) ) | 
						
							| 116 | 115 | eqcomd |  |-  ( I = ( J + 1 ) -> ( ( J + 1 ) x. T ) = ( I x. T ) ) | 
						
							| 117 | 116 | oveq2d |  |-  ( I = ( J + 1 ) -> ( X + ( ( J + 1 ) x. T ) ) = ( X + ( I x. T ) ) ) | 
						
							| 118 | 117 | adantl |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( ( J + 1 ) x. T ) ) = ( X + ( I x. T ) ) ) | 
						
							| 119 | 109 114 118 | 3eqtrrd |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) = ( ( X + ( J x. T ) ) + T ) ) | 
						
							| 120 | 105 106 119 | 3brtr4d |  |-  ( ( ph /\ I = ( J + 1 ) ) -> B < ( X + ( I x. T ) ) ) | 
						
							| 121 | 2 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> B e. RR ) | 
						
							| 122 | 59 | adantr |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( X + ( I x. T ) ) e. RR ) | 
						
							| 123 | 121 122 | ltnled |  |-  ( ( ph /\ I = ( J + 1 ) ) -> ( B < ( X + ( I x. T ) ) <-> -. ( X + ( I x. T ) ) <_ B ) ) | 
						
							| 124 | 120 123 | mpbid |  |-  ( ( ph /\ I = ( J + 1 ) ) -> -. ( X + ( I x. T ) ) <_ B ) | 
						
							| 125 | 98 124 | pm2.65da |  |-  ( ph -> -. I = ( J + 1 ) ) | 
						
							| 126 | 95 125 | jca |  |-  ( ph -> ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) ) | 
						
							| 127 | 126 | adantr |  |-  ( ( ph /\ -. I = J ) -> ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) ) | 
						
							| 128 |  | pm4.56 |  |-  ( ( -. J = ( I + 1 ) /\ -. I = ( J + 1 ) ) <-> -. ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 129 | 127 128 | sylib |  |-  ( ( ph /\ -. I = J ) -> -. ( J = ( I + 1 ) \/ I = ( J + 1 ) ) ) | 
						
							| 130 | 49 129 | condan |  |-  ( ph -> I = J ) |