Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem43.1 |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
2 |
|
1red |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s = 0 ) -> 1 e. RR ) |
3 |
|
pire |
|- _pi e. RR |
4 |
3
|
a1i |
|- ( s e. ( -u _pi [,] _pi ) -> _pi e. RR ) |
5 |
4
|
renegcld |
|- ( s e. ( -u _pi [,] _pi ) -> -u _pi e. RR ) |
6 |
|
id |
|- ( s e. ( -u _pi [,] _pi ) -> s e. ( -u _pi [,] _pi ) ) |
7 |
|
eliccre |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ s e. ( -u _pi [,] _pi ) ) -> s e. RR ) |
8 |
5 4 6 7
|
syl3anc |
|- ( s e. ( -u _pi [,] _pi ) -> s e. RR ) |
9 |
8
|
adantr |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. RR ) |
10 |
|
2re |
|- 2 e. RR |
11 |
10
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> 2 e. RR ) |
12 |
9
|
rehalfcld |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( s / 2 ) e. RR ) |
13 |
12
|
resincld |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( sin ` ( s / 2 ) ) e. RR ) |
14 |
11 13
|
remulcld |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
15 |
|
2cnd |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> 2 e. CC ) |
16 |
13
|
recnd |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( sin ` ( s / 2 ) ) e. CC ) |
17 |
|
2ne0 |
|- 2 =/= 0 |
18 |
17
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> 2 =/= 0 ) |
19 |
|
0xr |
|- 0 e. RR* |
20 |
19
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> 0 e. RR* ) |
21 |
10 3
|
remulcli |
|- ( 2 x. _pi ) e. RR |
22 |
21
|
rexri |
|- ( 2 x. _pi ) e. RR* |
23 |
22
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> ( 2 x. _pi ) e. RR* ) |
24 |
8
|
adantr |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> s e. RR ) |
25 |
|
simpr |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> 0 < s ) |
26 |
21
|
a1i |
|- ( s e. ( -u _pi [,] _pi ) -> ( 2 x. _pi ) e. RR ) |
27 |
5
|
rexrd |
|- ( s e. ( -u _pi [,] _pi ) -> -u _pi e. RR* ) |
28 |
4
|
rexrd |
|- ( s e. ( -u _pi [,] _pi ) -> _pi e. RR* ) |
29 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ s e. ( -u _pi [,] _pi ) ) -> s <_ _pi ) |
30 |
27 28 6 29
|
syl3anc |
|- ( s e. ( -u _pi [,] _pi ) -> s <_ _pi ) |
31 |
|
pirp |
|- _pi e. RR+ |
32 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
33 |
31 32
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
34 |
33
|
a1i |
|- ( s e. ( -u _pi [,] _pi ) -> _pi < ( 2 x. _pi ) ) |
35 |
8 4 26 30 34
|
lelttrd |
|- ( s e. ( -u _pi [,] _pi ) -> s < ( 2 x. _pi ) ) |
36 |
35
|
adantr |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> s < ( 2 x. _pi ) ) |
37 |
20 23 24 25 36
|
eliood |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> s e. ( 0 (,) ( 2 x. _pi ) ) ) |
38 |
|
sinaover2ne0 |
|- ( s e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
39 |
37 38
|
syl |
|- ( ( s e. ( -u _pi [,] _pi ) /\ 0 < s ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
40 |
39
|
adantlr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ 0 < s ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
41 |
8
|
ad2antrr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> s e. RR ) |
42 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ s e. ( -u _pi [,] _pi ) ) -> -u _pi <_ s ) |
43 |
27 28 6 42
|
syl3anc |
|- ( s e. ( -u _pi [,] _pi ) -> -u _pi <_ s ) |
44 |
43
|
ad2antrr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> -u _pi <_ s ) |
45 |
|
0red |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> 0 e. RR ) |
46 |
|
neqne |
|- ( -. s = 0 -> s =/= 0 ) |
47 |
46
|
ad2antlr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> s =/= 0 ) |
48 |
|
simpr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> -. 0 < s ) |
49 |
41 45 47 48
|
lttri5d |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> s < 0 ) |
50 |
5
|
ad2antrr |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> -u _pi e. RR ) |
51 |
|
elico2 |
|- ( ( -u _pi e. RR /\ 0 e. RR* ) -> ( s e. ( -u _pi [,) 0 ) <-> ( s e. RR /\ -u _pi <_ s /\ s < 0 ) ) ) |
52 |
50 19 51
|
sylancl |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> ( s e. ( -u _pi [,) 0 ) <-> ( s e. RR /\ -u _pi <_ s /\ s < 0 ) ) ) |
53 |
41 44 49 52
|
mpbir3and |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> s e. ( -u _pi [,) 0 ) ) |
54 |
3
|
renegcli |
|- -u _pi e. RR |
55 |
|
elicore |
|- ( ( -u _pi e. RR /\ s e. ( -u _pi [,) 0 ) ) -> s e. RR ) |
56 |
54 55
|
mpan |
|- ( s e. ( -u _pi [,) 0 ) -> s e. RR ) |
57 |
56
|
recnd |
|- ( s e. ( -u _pi [,) 0 ) -> s e. CC ) |
58 |
|
2cnd |
|- ( s e. ( -u _pi [,) 0 ) -> 2 e. CC ) |
59 |
17
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> 2 =/= 0 ) |
60 |
57 58 59
|
divnegd |
|- ( s e. ( -u _pi [,) 0 ) -> -u ( s / 2 ) = ( -u s / 2 ) ) |
61 |
60
|
eqcomd |
|- ( s e. ( -u _pi [,) 0 ) -> ( -u s / 2 ) = -u ( s / 2 ) ) |
62 |
61
|
fveq2d |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` ( -u s / 2 ) ) = ( sin ` -u ( s / 2 ) ) ) |
63 |
62
|
negeqd |
|- ( s e. ( -u _pi [,) 0 ) -> -u ( sin ` ( -u s / 2 ) ) = -u ( sin ` -u ( s / 2 ) ) ) |
64 |
57
|
halfcld |
|- ( s e. ( -u _pi [,) 0 ) -> ( s / 2 ) e. CC ) |
65 |
|
sinneg |
|- ( ( s / 2 ) e. CC -> ( sin ` -u ( s / 2 ) ) = -u ( sin ` ( s / 2 ) ) ) |
66 |
64 65
|
syl |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` -u ( s / 2 ) ) = -u ( sin ` ( s / 2 ) ) ) |
67 |
66
|
negeqd |
|- ( s e. ( -u _pi [,) 0 ) -> -u ( sin ` -u ( s / 2 ) ) = -u -u ( sin ` ( s / 2 ) ) ) |
68 |
64
|
sincld |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` ( s / 2 ) ) e. CC ) |
69 |
68
|
negnegd |
|- ( s e. ( -u _pi [,) 0 ) -> -u -u ( sin ` ( s / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
70 |
63 67 69
|
3eqtrd |
|- ( s e. ( -u _pi [,) 0 ) -> -u ( sin ` ( -u s / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
71 |
57
|
negcld |
|- ( s e. ( -u _pi [,) 0 ) -> -u s e. CC ) |
72 |
71
|
halfcld |
|- ( s e. ( -u _pi [,) 0 ) -> ( -u s / 2 ) e. CC ) |
73 |
72
|
sincld |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` ( -u s / 2 ) ) e. CC ) |
74 |
19
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> 0 e. RR* ) |
75 |
22
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> ( 2 x. _pi ) e. RR* ) |
76 |
56
|
renegcld |
|- ( s e. ( -u _pi [,) 0 ) -> -u s e. RR ) |
77 |
54
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> -u _pi e. RR ) |
78 |
77
|
rexrd |
|- ( s e. ( -u _pi [,) 0 ) -> -u _pi e. RR* ) |
79 |
|
id |
|- ( s e. ( -u _pi [,) 0 ) -> s e. ( -u _pi [,) 0 ) ) |
80 |
|
icoltub |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ s e. ( -u _pi [,) 0 ) ) -> s < 0 ) |
81 |
78 74 79 80
|
syl3anc |
|- ( s e. ( -u _pi [,) 0 ) -> s < 0 ) |
82 |
56
|
lt0neg1d |
|- ( s e. ( -u _pi [,) 0 ) -> ( s < 0 <-> 0 < -u s ) ) |
83 |
81 82
|
mpbid |
|- ( s e. ( -u _pi [,) 0 ) -> 0 < -u s ) |
84 |
3
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> _pi e. RR ) |
85 |
21
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> ( 2 x. _pi ) e. RR ) |
86 |
|
icogelb |
|- ( ( -u _pi e. RR* /\ 0 e. RR* /\ s e. ( -u _pi [,) 0 ) ) -> -u _pi <_ s ) |
87 |
78 74 79 86
|
syl3anc |
|- ( s e. ( -u _pi [,) 0 ) -> -u _pi <_ s ) |
88 |
84 56 87
|
lenegcon1d |
|- ( s e. ( -u _pi [,) 0 ) -> -u s <_ _pi ) |
89 |
33
|
a1i |
|- ( s e. ( -u _pi [,) 0 ) -> _pi < ( 2 x. _pi ) ) |
90 |
76 84 85 88 89
|
lelttrd |
|- ( s e. ( -u _pi [,) 0 ) -> -u s < ( 2 x. _pi ) ) |
91 |
74 75 76 83 90
|
eliood |
|- ( s e. ( -u _pi [,) 0 ) -> -u s e. ( 0 (,) ( 2 x. _pi ) ) ) |
92 |
|
sinaover2ne0 |
|- ( -u s e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( -u s / 2 ) ) =/= 0 ) |
93 |
91 92
|
syl |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` ( -u s / 2 ) ) =/= 0 ) |
94 |
73 93
|
negne0d |
|- ( s e. ( -u _pi [,) 0 ) -> -u ( sin ` ( -u s / 2 ) ) =/= 0 ) |
95 |
70 94
|
eqnetrrd |
|- ( s e. ( -u _pi [,) 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
96 |
53 95
|
syl |
|- ( ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) /\ -. 0 < s ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
97 |
40 96
|
pm2.61dan |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
98 |
15 16 18 97
|
mulne0d |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
99 |
9 14 98
|
redivcld |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR ) |
100 |
2 99
|
ifclda |
|- ( s e. ( -u _pi [,] _pi ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. RR ) |
101 |
1 100
|
fmpti |
|- K : ( -u _pi [,] _pi ) --> RR |