Step |
Hyp |
Ref |
Expression |
1 |
|
0xr |
|- 0 e. RR* |
2 |
1
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> 0 e. RR* ) |
3 |
|
2re |
|- 2 e. RR |
4 |
|
pire |
|- _pi e. RR |
5 |
3 4
|
remulcli |
|- ( 2 x. _pi ) e. RR |
6 |
5
|
rexri |
|- ( 2 x. _pi ) e. RR* |
7 |
6
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> ( 2 x. _pi ) e. RR* ) |
8 |
4
|
renegcli |
|- -u _pi e. RR |
9 |
8
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi e. RR ) |
10 |
4
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> _pi e. RR ) |
11 |
|
id |
|- ( A e. ( -u _pi [,] _pi ) -> A e. ( -u _pi [,] _pi ) ) |
12 |
|
eliccre |
|- ( ( -u _pi e. RR /\ _pi e. RR /\ A e. ( -u _pi [,] _pi ) ) -> A e. RR ) |
13 |
9 10 11 12
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> A e. RR ) |
14 |
13
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A e. RR ) |
15 |
|
simpr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> 0 < A ) |
16 |
5
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> ( 2 x. _pi ) e. RR ) |
17 |
9
|
rexrd |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi e. RR* ) |
18 |
10
|
rexrd |
|- ( A e. ( -u _pi [,] _pi ) -> _pi e. RR* ) |
19 |
|
iccleub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. ( -u _pi [,] _pi ) ) -> A <_ _pi ) |
20 |
17 18 11 19
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> A <_ _pi ) |
21 |
|
pirp |
|- _pi e. RR+ |
22 |
|
2timesgt |
|- ( _pi e. RR+ -> _pi < ( 2 x. _pi ) ) |
23 |
21 22
|
ax-mp |
|- _pi < ( 2 x. _pi ) |
24 |
23
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> _pi < ( 2 x. _pi ) ) |
25 |
13 10 16 20 24
|
lelttrd |
|- ( A e. ( -u _pi [,] _pi ) -> A < ( 2 x. _pi ) ) |
26 |
25
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A < ( 2 x. _pi ) ) |
27 |
2 7 14 15 26
|
eliood |
|- ( ( A e. ( -u _pi [,] _pi ) /\ 0 < A ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
28 |
27
|
adantlr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ 0 < A ) -> A e. ( 0 (,) ( 2 x. _pi ) ) ) |
29 |
|
sinaover2ne0 |
|- ( A e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
30 |
28 29
|
syl |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ 0 < A ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
31 |
|
simpll |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A e. ( -u _pi [,] _pi ) ) |
32 |
31 13
|
syl |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A e. RR ) |
33 |
|
0red |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> 0 e. RR ) |
34 |
|
simplr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A =/= 0 ) |
35 |
|
simpr |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> -. 0 < A ) |
36 |
32 33 34 35
|
lttri5d |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> A < 0 ) |
37 |
13
|
recnd |
|- ( A e. ( -u _pi [,] _pi ) -> A e. CC ) |
38 |
37
|
halfcld |
|- ( A e. ( -u _pi [,] _pi ) -> ( A / 2 ) e. CC ) |
39 |
|
sinneg |
|- ( ( A / 2 ) e. CC -> ( sin ` -u ( A / 2 ) ) = -u ( sin ` ( A / 2 ) ) ) |
40 |
38 39
|
syl |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` -u ( A / 2 ) ) = -u ( sin ` ( A / 2 ) ) ) |
41 |
|
2cnd |
|- ( A e. ( -u _pi [,] _pi ) -> 2 e. CC ) |
42 |
|
2ne0 |
|- 2 =/= 0 |
43 |
42
|
a1i |
|- ( A e. ( -u _pi [,] _pi ) -> 2 =/= 0 ) |
44 |
37 41 43
|
divnegd |
|- ( A e. ( -u _pi [,] _pi ) -> -u ( A / 2 ) = ( -u A / 2 ) ) |
45 |
44
|
fveq2d |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` -u ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
46 |
40 45
|
eqtr3d |
|- ( A e. ( -u _pi [,] _pi ) -> -u ( sin ` ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
47 |
46
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( sin ` ( A / 2 ) ) = ( sin ` ( -u A / 2 ) ) ) |
48 |
1
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> 0 e. RR* ) |
49 |
6
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( 2 x. _pi ) e. RR* ) |
50 |
13
|
renegcld |
|- ( A e. ( -u _pi [,] _pi ) -> -u A e. RR ) |
51 |
50
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A e. RR ) |
52 |
|
simpr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> A < 0 ) |
53 |
13
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> A e. RR ) |
54 |
53
|
lt0neg1d |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( A < 0 <-> 0 < -u A ) ) |
55 |
52 54
|
mpbid |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> 0 < -u A ) |
56 |
5
|
renegcli |
|- -u ( 2 x. _pi ) e. RR |
57 |
56
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) e. RR ) |
58 |
8
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u _pi e. RR ) |
59 |
4 5
|
ltnegi |
|- ( _pi < ( 2 x. _pi ) <-> -u ( 2 x. _pi ) < -u _pi ) |
60 |
23 59
|
mpbi |
|- -u ( 2 x. _pi ) < -u _pi |
61 |
60
|
a1i |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) < -u _pi ) |
62 |
|
iccgelb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ A e. ( -u _pi [,] _pi ) ) -> -u _pi <_ A ) |
63 |
17 18 11 62
|
syl3anc |
|- ( A e. ( -u _pi [,] _pi ) -> -u _pi <_ A ) |
64 |
63
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u _pi <_ A ) |
65 |
57 58 53 61 64
|
ltletrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( 2 x. _pi ) < A ) |
66 |
57 53
|
ltnegd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( -u ( 2 x. _pi ) < A <-> -u A < -u -u ( 2 x. _pi ) ) ) |
67 |
65 66
|
mpbid |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A < -u -u ( 2 x. _pi ) ) |
68 |
16
|
recnd |
|- ( A e. ( -u _pi [,] _pi ) -> ( 2 x. _pi ) e. CC ) |
69 |
68
|
negnegd |
|- ( A e. ( -u _pi [,] _pi ) -> -u -u ( 2 x. _pi ) = ( 2 x. _pi ) ) |
70 |
69
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u -u ( 2 x. _pi ) = ( 2 x. _pi ) ) |
71 |
67 70
|
breqtrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A < ( 2 x. _pi ) ) |
72 |
48 49 51 55 71
|
eliood |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u A e. ( 0 (,) ( 2 x. _pi ) ) ) |
73 |
|
sinaover2ne0 |
|- ( -u A e. ( 0 (,) ( 2 x. _pi ) ) -> ( sin ` ( -u A / 2 ) ) =/= 0 ) |
74 |
72 73
|
syl |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( -u A / 2 ) ) =/= 0 ) |
75 |
47 74
|
eqnetrd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -u ( sin ` ( A / 2 ) ) =/= 0 ) |
76 |
75
|
neneqd |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -. -u ( sin ` ( A / 2 ) ) = 0 ) |
77 |
38
|
sincld |
|- ( A e. ( -u _pi [,] _pi ) -> ( sin ` ( A / 2 ) ) e. CC ) |
78 |
77
|
adantr |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( A / 2 ) ) e. CC ) |
79 |
78
|
negeq0d |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( ( sin ` ( A / 2 ) ) = 0 <-> -u ( sin ` ( A / 2 ) ) = 0 ) ) |
80 |
76 79
|
mtbird |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> -. ( sin ` ( A / 2 ) ) = 0 ) |
81 |
80
|
neqned |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A < 0 ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
82 |
31 36 81
|
syl2anc |
|- ( ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) /\ -. 0 < A ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |
83 |
30 82
|
pm2.61dan |
|- ( ( A e. ( -u _pi [,] _pi ) /\ A =/= 0 ) -> ( sin ` ( A / 2 ) ) =/= 0 ) |