| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem46.cn | 
							 |-  ( ph -> F e. ( dom F -cn-> CC ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem46.rlim | 
							 |-  ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem46.llim | 
							 |-  ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem46.qiso | 
							 |-  ( ph -> Q Isom < , < ( ( 0 ... M ) , H ) )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem46.qf | 
							 |-  ( ph -> Q : ( 0 ... M ) --> H )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem46.i | 
							 |-  ( ph -> I e. ( 0 ..^ M ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem46.10 | 
							 |-  ( ph -> ( Q ` I ) < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 8 | 
							
								
							 | 
							fourierdlem46.qiss | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -u _pi (,) _pi ) )  | 
						
						
							| 9 | 
							
								
							 | 
							fourierdlem46.c | 
							 |-  ( ph -> C e. RR )  | 
						
						
							| 10 | 
							
								
							 | 
							fourierdlem46.h | 
							 |-  H = ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) | 
						
						
							| 11 | 
							
								
							 | 
							fourierdlem46.ranq | 
							 |-  ( ph -> ran Q = H )  | 
						
						
							| 12 | 
							
								
							 | 
							pire | 
							 |-  _pi e. RR  | 
						
						
							| 13 | 
							
								12
							 | 
							a1i | 
							 |-  ( ph -> _pi e. RR )  | 
						
						
							| 14 | 
							
								13
							 | 
							renegcld | 
							 |-  ( ph -> -u _pi e. RR )  | 
						
						
							| 15 | 
							
								
							 | 
							tpssi | 
							 |-  ( ( -u _pi e. RR /\ _pi e. RR /\ C e. RR ) -> { -u _pi , _pi , C } C_ RR ) | 
						
						
							| 16 | 
							
								14 13 9 15
							 | 
							syl3anc | 
							 |-  ( ph -> { -u _pi , _pi , C } C_ RR ) | 
						
						
							| 17 | 
							
								14 13
							 | 
							iccssred | 
							 |-  ( ph -> ( -u _pi [,] _pi ) C_ RR )  | 
						
						
							| 18 | 
							
								17
							 | 
							ssdifssd | 
							 |-  ( ph -> ( ( -u _pi [,] _pi ) \ dom F ) C_ RR )  | 
						
						
							| 19 | 
							
								16 18
							 | 
							unssd | 
							 |-  ( ph -> ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) C_ RR ) | 
						
						
							| 20 | 
							
								10 19
							 | 
							eqsstrid | 
							 |-  ( ph -> H C_ RR )  | 
						
						
							| 21 | 
							
								
							 | 
							elfzofz | 
							 |-  ( I e. ( 0 ..^ M ) -> I e. ( 0 ... M ) )  | 
						
						
							| 22 | 
							
								6 21
							 | 
							syl | 
							 |-  ( ph -> I e. ( 0 ... M ) )  | 
						
						
							| 23 | 
							
								5 22
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` I ) e. H )  | 
						
						
							| 24 | 
							
								20 23
							 | 
							sseldd | 
							 |-  ( ph -> ( Q ` I ) e. RR )  | 
						
						
							| 25 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` I ) e. RR )  | 
						
						
							| 26 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( I e. ( 0 ..^ M ) -> ( I + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 27 | 
							
								6 26
							 | 
							syl | 
							 |-  ( ph -> ( I + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 28 | 
							
								5 27
							 | 
							ffvelcdmd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. H )  | 
						
						
							| 29 | 
							
								20 28
							 | 
							sseldd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. RR )  | 
						
						
							| 30 | 
							
								29
							 | 
							rexrd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 31 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 32 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( Q ` I ) < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> x = ( Q ` I ) )  | 
						
						
							| 34 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> ( Q ` I ) e. dom F )  | 
						
						
							| 35 | 
							
								33 34
							 | 
							eqeltrd | 
							 |-  ( ( ( Q ` I ) e. dom F /\ x = ( Q ` I ) ) -> x e. dom F )  | 
						
						
							| 36 | 
							
								35
							 | 
							adantll | 
							 |-  ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x = ( Q ` I ) ) -> x e. dom F )  | 
						
						
							| 37 | 
							
								36
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ x = ( Q ` I ) ) -> x e. dom F )  | 
						
						
							| 38 | 
							
								
							 | 
							ssun2 | 
							 |-  ( ( -u _pi [,] _pi ) \ dom F ) C_ ( { -u _pi , _pi , C } u. ( ( -u _pi [,] _pi ) \ dom F ) ) | 
						
						
							| 39 | 
							
								38 10
							 | 
							sseqtrri | 
							 |-  ( ( -u _pi [,] _pi ) \ dom F ) C_ H  | 
						
						
							| 40 | 
							
								
							 | 
							ioossicc | 
							 |-  ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi )  | 
						
						
							| 41 | 
							
								8 40
							 | 
							sstrdi | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -u _pi [,] _pi ) )  | 
						
						
							| 42 | 
							
								41
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( -u _pi [,] _pi ) )  | 
						
						
							| 43 | 
							
								42
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( -u _pi [,] _pi ) )  | 
						
						
							| 44 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. dom F )  | 
						
						
							| 45 | 
							
								43 44
							 | 
							eldifd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ( ( -u _pi [,] _pi ) \ dom F ) )  | 
						
						
							| 46 | 
							
								39 45
							 | 
							sselid | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. H )  | 
						
						
							| 47 | 
							
								11
							 | 
							eqcomd | 
							 |-  ( ph -> H = ran Q )  | 
						
						
							| 48 | 
							
								47
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> H = ran Q )  | 
						
						
							| 49 | 
							
								46 48
							 | 
							eleqtrd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> x e. ran Q )  | 
						
						
							| 50 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ran Q ) -> x e. ran Q )  | 
						
						
							| 51 | 
							
								
							 | 
							ffn | 
							 |-  ( Q : ( 0 ... M ) --> H -> Q Fn ( 0 ... M ) )  | 
						
						
							| 52 | 
							
								5 51
							 | 
							syl | 
							 |-  ( ph -> Q Fn ( 0 ... M ) )  | 
						
						
							| 53 | 
							
								52
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ran Q ) -> Q Fn ( 0 ... M ) )  | 
						
						
							| 54 | 
							
								
							 | 
							fvelrnb | 
							 |-  ( Q Fn ( 0 ... M ) -> ( x e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = x ) )  | 
						
						
							| 55 | 
							
								53 54
							 | 
							syl | 
							 |-  ( ( ph /\ x e. ran Q ) -> ( x e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = x ) )  | 
						
						
							| 56 | 
							
								50 55
							 | 
							mpbid | 
							 |-  ( ( ph /\ x e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = x )  | 
						
						
							| 57 | 
							
								56
							 | 
							adantlr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = x )  | 
						
						
							| 58 | 
							
								
							 | 
							elfzelz | 
							 |-  ( j e. ( 0 ... M ) -> j e. ZZ )  | 
						
						
							| 59 | 
							
								58
							 | 
							ad2antlr | 
							 |-  ( ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> j e. ZZ )  | 
						
						
							| 60 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> ph )  | 
						
						
							| 61 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> j e. ( 0 ... M ) )  | 
						
						
							| 62 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) = x )  | 
						
						
							| 63 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 64 | 
							
								62 63
							 | 
							eqeltrd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 65 | 
							
								64
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 66 | 
							
								
							 | 
							elfzoelz | 
							 |-  ( I e. ( 0 ..^ M ) -> I e. ZZ )  | 
						
						
							| 67 | 
							
								6 66
							 | 
							syl | 
							 |-  ( ph -> I e. ZZ )  | 
						
						
							| 68 | 
							
								67
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I e. ZZ )  | 
						
						
							| 69 | 
							
								24
							 | 
							rexrd | 
							 |-  ( ph -> ( Q ` I ) e. RR* )  | 
						
						
							| 70 | 
							
								69
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 71 | 
							
								30
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 72 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 73 | 
							
								
							 | 
							ioogtlb | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < ( Q ` j ) )  | 
						
						
							| 74 | 
							
								70 71 72 73
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < ( Q ` j ) )  | 
						
						
							| 75 | 
							
								4
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> Q Isom < , < ( ( 0 ... M ) , H ) )  | 
						
						
							| 76 | 
							
								22
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I e. ( 0 ... M ) )  | 
						
						
							| 77 | 
							
								
							 | 
							simplr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> j e. ( 0 ... M ) )  | 
						
						
							| 78 | 
							
								
							 | 
							isorel | 
							 |-  ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( I e. ( 0 ... M ) /\ j e. ( 0 ... M ) ) ) -> ( I < j <-> ( Q ` I ) < ( Q ` j ) ) )  | 
						
						
							| 79 | 
							
								75 76 77 78
							 | 
							syl12anc | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( I < j <-> ( Q ` I ) < ( Q ` j ) ) )  | 
						
						
							| 80 | 
							
								74 79
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> I < j )  | 
						
						
							| 81 | 
							
								
							 | 
							iooltub | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 82 | 
							
								70 71 72 81
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` j ) < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 83 | 
							
								27
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( I + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 84 | 
							
								
							 | 
							isorel | 
							 |-  ( ( Q Isom < , < ( ( 0 ... M ) , H ) /\ ( j e. ( 0 ... M ) /\ ( I + 1 ) e. ( 0 ... M ) ) ) -> ( j < ( I + 1 ) <-> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 85 | 
							
								75 77 83 84
							 | 
							syl12anc | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> ( j < ( I + 1 ) <-> ( Q ` j ) < ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 86 | 
							
								82 85
							 | 
							mpbird | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> j < ( I + 1 ) )  | 
						
						
							| 87 | 
							
								
							 | 
							btwnnz | 
							 |-  ( ( I e. ZZ /\ I < j /\ j < ( I + 1 ) ) -> -. j e. ZZ )  | 
						
						
							| 88 | 
							
								68 80 86 87
							 | 
							syl3anc | 
							 |-  ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> -. j e. ZZ )  | 
						
						
							| 89 | 
							
								60 61 65 88
							 | 
							syl21anc | 
							 |-  ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> -. j e. ZZ )  | 
						
						
							| 90 | 
							
								89
							 | 
							adantllr | 
							 |-  ( ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = x ) -> -. j e. ZZ )  | 
						
						
							| 91 | 
							
								59 90
							 | 
							pm2.65da | 
							 |-  ( ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) /\ j e. ( 0 ... M ) ) -> -. ( Q ` j ) = x )  | 
						
						
							| 92 | 
							
								91
							 | 
							nrexdv | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ x e. ran Q ) -> -. E. j e. ( 0 ... M ) ( Q ` j ) = x )  | 
						
						
							| 93 | 
							
								57 92
							 | 
							pm2.65da | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> -. x e. ran Q )  | 
						
						
							| 94 | 
							
								93
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) /\ -. x e. dom F ) -> -. x e. ran Q )  | 
						
						
							| 95 | 
							
								49 94
							 | 
							condan | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) -> x e. dom F )  | 
						
						
							| 96 | 
							
								95
							 | 
							ralrimiva | 
							 |-  ( ph -> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 97 | 
							
								
							 | 
							dfss3 | 
							 |-  ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 98 | 
							
								96 97
							 | 
							sylibr | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F )  | 
						
						
							| 99 | 
							
								98
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F )  | 
						
						
							| 100 | 
							
								69
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 101 | 
							
								30
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 102 | 
							
								
							 | 
							icossre | 
							 |-  ( ( ( Q ` I ) e. RR /\ ( Q ` ( I + 1 ) ) e. RR* ) -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ RR )  | 
						
						
							| 103 | 
							
								24 30 102
							 | 
							syl2anc | 
							 |-  ( ph -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ RR )  | 
						
						
							| 104 | 
							
								103
							 | 
							sselda | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. RR )  | 
						
						
							| 105 | 
							
								104
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. RR )  | 
						
						
							| 106 | 
							
								24
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) e. RR )  | 
						
						
							| 107 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 108 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 109 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 110 | 
							
								
							 | 
							icogelb | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) <_ x )  | 
						
						
							| 111 | 
							
								107 108 109 110
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) <_ x )  | 
						
						
							| 112 | 
							
								111
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) <_ x )  | 
						
						
							| 113 | 
							
								
							 | 
							neqne | 
							 |-  ( -. x = ( Q ` I ) -> x =/= ( Q ` I ) )  | 
						
						
							| 114 | 
							
								113
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x =/= ( Q ` I ) )  | 
						
						
							| 115 | 
							
								106 105 112 114
							 | 
							leneltd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> ( Q ` I ) < x )  | 
						
						
							| 116 | 
							
								
							 | 
							icoltub | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 117 | 
							
								107 108 109 116
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 118 | 
							
								117
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 119 | 
							
								100 101 105 115 118
							 | 
							eliood | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 120 | 
							
								99 119
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. dom F )  | 
						
						
							| 121 | 
							
								120
							 | 
							adantllr | 
							 |-  ( ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` I ) ) -> x e. dom F )  | 
						
						
							| 122 | 
							
								37 121
							 | 
							pm2.61dan | 
							 |-  ( ( ( ph /\ ( Q ` I ) e. dom F ) /\ x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) -> x e. dom F )  | 
						
						
							| 123 | 
							
								122
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> A. x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 124 | 
							
								
							 | 
							dfss3 | 
							 |-  ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 125 | 
							
								123 124
							 | 
							sylibr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F )  | 
						
						
							| 126 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> F e. ( dom F -cn-> CC ) )  | 
						
						
							| 127 | 
							
								
							 | 
							rescncf | 
							 |-  ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) C_ dom F -> ( F e. ( dom F -cn-> CC ) -> ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) )  | 
						
						
							| 128 | 
							
								125 126 127
							 | 
							sylc | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 129 | 
							
								25 31 32 128
							 | 
							icocncflimc | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) e. ( ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 130 | 
							
								24
							 | 
							leidd | 
							 |-  ( ph -> ( Q ` I ) <_ ( Q ` I ) )  | 
						
						
							| 131 | 
							
								69 30 69 130 7
							 | 
							elicod | 
							 |-  ( ph -> ( Q ` I ) e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 132 | 
							
								
							 | 
							fvres | 
							 |-  ( ( Q ` I ) e. ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) = ( F ` ( Q ` I ) ) )  | 
						
						
							| 133 | 
							
								131 132
							 | 
							syl | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) = ( F ` ( Q ` I ) ) )  | 
						
						
							| 134 | 
							
								133
							 | 
							eqcomd | 
							 |-  ( ph -> ( F ` ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) )  | 
						
						
							| 135 | 
							
								134
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F ` ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) ` ( Q ` I ) ) )  | 
						
						
							| 136 | 
							
								
							 | 
							ioossico | 
							 |-  ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) )  | 
						
						
							| 137 | 
							
								136
							 | 
							a1i | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 138 | 
							
								137
							 | 
							resabs1d | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 139 | 
							
								138
							 | 
							eqcomd | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 140 | 
							
								139
							 | 
							oveq1d | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) [,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 141 | 
							
								129 135 140
							 | 
							3eltr4d | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( F ` ( Q ` I ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 142 | 
							
								141
							 | 
							ne0d | 
							 |-  ( ( ph /\ ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 143 | 
							
								
							 | 
							pnfxr | 
							 |-  +oo e. RR*  | 
						
						
							| 144 | 
							
								143
							 | 
							a1i | 
							 |-  ( ph -> +oo e. RR* )  | 
						
						
							| 145 | 
							
								29
							 | 
							ltpnfd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) < +oo )  | 
						
						
							| 146 | 
							
								30 144 145
							 | 
							xrltled | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) <_ +oo )  | 
						
						
							| 147 | 
							
								
							 | 
							iooss2 | 
							 |-  ( ( +oo e. RR* /\ ( Q ` ( I + 1 ) ) <_ +oo ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,) +oo ) )  | 
						
						
							| 148 | 
							
								143 146 147
							 | 
							sylancr | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,) +oo ) )  | 
						
						
							| 149 | 
							
								148
							 | 
							resabs1d | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 150 | 
							
								149
							 | 
							oveq1d | 
							 |-  ( ph -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 151 | 
							
								150
							 | 
							eqcomd | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 152 | 
							
								151
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) = ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 153 | 
							
								
							 | 
							limcresi | 
							 |-  ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) C_ ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) )  | 
						
						
							| 154 | 
							
								24
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. RR )  | 
						
						
							| 155 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ph )  | 
						
						
							| 156 | 
							
								12
							 | 
							renegcli | 
							 |-  -u _pi e. RR  | 
						
						
							| 157 | 
							
								156
							 | 
							rexri | 
							 |-  -u _pi e. RR*  | 
						
						
							| 158 | 
							
								157
							 | 
							a1i | 
							 |-  ( ph -> -u _pi e. RR* )  | 
						
						
							| 159 | 
							
								12
							 | 
							rexri | 
							 |-  _pi e. RR*  | 
						
						
							| 160 | 
							
								159
							 | 
							a1i | 
							 |-  ( ph -> _pi e. RR* )  | 
						
						
							| 161 | 
							
								14 13 24 29 7 8
							 | 
							fourierdlem10 | 
							 |-  ( ph -> ( -u _pi <_ ( Q ` I ) /\ ( Q ` ( I + 1 ) ) <_ _pi ) )  | 
						
						
							| 162 | 
							
								161
							 | 
							simpld | 
							 |-  ( ph -> -u _pi <_ ( Q ` I ) )  | 
						
						
							| 163 | 
							
								161
							 | 
							simprd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) <_ _pi )  | 
						
						
							| 164 | 
							
								24 29 13 7 163
							 | 
							ltletrd | 
							 |-  ( ph -> ( Q ` I ) < _pi )  | 
						
						
							| 165 | 
							
								158 160 69 162 164
							 | 
							elicod | 
							 |-  ( ph -> ( Q ` I ) e. ( -u _pi [,) _pi ) )  | 
						
						
							| 166 | 
							
								165
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. ( -u _pi [,) _pi ) )  | 
						
						
							| 167 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> -. ( Q ` I ) e. dom F )  | 
						
						
							| 168 | 
							
								166 167
							 | 
							eldifd | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) )  | 
						
						
							| 169 | 
							
								155 168
							 | 
							jca | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) )  | 
						
						
							| 170 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = ( Q ` I ) -> ( x e. ( ( -u _pi [,) _pi ) \ dom F ) <-> ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) )  | 
						
						
							| 171 | 
							
								170
							 | 
							anbi2d | 
							 |-  ( x = ( Q ` I ) -> ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) <-> ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) ) )  | 
						
						
							| 172 | 
							
								
							 | 
							oveq1 | 
							 |-  ( x = ( Q ` I ) -> ( x (,) +oo ) = ( ( Q ` I ) (,) +oo ) )  | 
						
						
							| 173 | 
							
								172
							 | 
							reseq2d | 
							 |-  ( x = ( Q ` I ) -> ( F |` ( x (,) +oo ) ) = ( F |` ( ( Q ` I ) (,) +oo ) ) )  | 
						
						
							| 174 | 
							
								
							 | 
							id | 
							 |-  ( x = ( Q ` I ) -> x = ( Q ` I ) )  | 
						
						
							| 175 | 
							
								173 174
							 | 
							oveq12d | 
							 |-  ( x = ( Q ` I ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) = ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) )  | 
						
						
							| 176 | 
							
								175
							 | 
							neeq1d | 
							 |-  ( x = ( Q ` I ) -> ( ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) <-> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) )  | 
						
						
							| 177 | 
							
								171 176
							 | 
							imbi12d | 
							 |-  ( x = ( Q ` I ) -> ( ( ( ph /\ x e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( x (,) +oo ) ) limCC x ) =/= (/) ) <-> ( ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) ) )  | 
						
						
							| 178 | 
							
								177 2
							 | 
							vtoclg | 
							 |-  ( ( Q ` I ) e. RR -> ( ( ph /\ ( Q ` I ) e. ( ( -u _pi [,) _pi ) \ dom F ) ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) )  | 
						
						
							| 179 | 
							
								154 169 178
							 | 
							sylc | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 180 | 
							
								
							 | 
							ssn0 | 
							 |-  ( ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) C_ ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) /\ ( ( F |` ( ( Q ` I ) (,) +oo ) ) limCC ( Q ` I ) ) =/= (/) ) -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 181 | 
							
								153 179 180
							 | 
							sylancr | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( ( F |` ( ( Q ` I ) (,) +oo ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 182 | 
							
								152 181
							 | 
							eqnetrd | 
							 |-  ( ( ph /\ -. ( Q ` I ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 183 | 
							
								142 182
							 | 
							pm2.61dan | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) )  | 
						
						
							| 184 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 185 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR )  | 
						
						
							| 186 | 
							
								7
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` I ) < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 187 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> x = ( Q ` ( I + 1 ) ) )  | 
						
						
							| 188 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. dom F )  | 
						
						
							| 189 | 
							
								187 188
							 | 
							eqeltrd | 
							 |-  ( ( ( Q ` ( I + 1 ) ) e. dom F /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F )  | 
						
						
							| 190 | 
							
								189
							 | 
							adantll | 
							 |-  ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F )  | 
						
						
							| 191 | 
							
								190
							 | 
							adantlr | 
							 |-  ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ x = ( Q ` ( I + 1 ) ) ) -> x e. dom F )  | 
						
						
							| 192 | 
							
								98
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ dom F )  | 
						
						
							| 193 | 
							
								69
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 194 | 
							
								30
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 195 | 
							
								69
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) e. RR* )  | 
						
						
							| 196 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR )  | 
						
						
							| 197 | 
							
								
							 | 
							iocssre | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ RR )  | 
						
						
							| 198 | 
							
								195 196 197
							 | 
							syl2anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ RR )  | 
						
						
							| 199 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 200 | 
							
								198 199
							 | 
							sseldd | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. RR )  | 
						
						
							| 201 | 
							
								200
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. RR )  | 
						
						
							| 202 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 203 | 
							
								
							 | 
							iocgtlb | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x )  | 
						
						
							| 204 | 
							
								195 202 199 203
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> ( Q ` I ) < x )  | 
						
						
							| 205 | 
							
								204
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` I ) < x )  | 
						
						
							| 206 | 
							
								29
							 | 
							ad2antrr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) e. RR )  | 
						
						
							| 207 | 
							
								
							 | 
							iocleub | 
							 |-  ( ( ( Q ` I ) e. RR* /\ ( Q ` ( I + 1 ) ) e. RR* /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x <_ ( Q ` ( I + 1 ) ) )  | 
						
						
							| 208 | 
							
								195 202 199 207
							 | 
							syl3anc | 
							 |-  ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x <_ ( Q ` ( I + 1 ) ) )  | 
						
						
							| 209 | 
							
								208
							 | 
							adantr | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x <_ ( Q ` ( I + 1 ) ) )  | 
						
						
							| 210 | 
							
								
							 | 
							neqne | 
							 |-  ( -. x = ( Q ` ( I + 1 ) ) -> x =/= ( Q ` ( I + 1 ) ) )  | 
						
						
							| 211 | 
							
								210
							 | 
							necomd | 
							 |-  ( -. x = ( Q ` ( I + 1 ) ) -> ( Q ` ( I + 1 ) ) =/= x )  | 
						
						
							| 212 | 
							
								211
							 | 
							adantl | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> ( Q ` ( I + 1 ) ) =/= x )  | 
						
						
							| 213 | 
							
								201 206 209 212
							 | 
							leneltd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 214 | 
							
								193 194 201 205 213
							 | 
							eliood | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 215 | 
							
								192 214
							 | 
							sseldd | 
							 |-  ( ( ( ph /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. dom F )  | 
						
						
							| 216 | 
							
								215
							 | 
							adantllr | 
							 |-  ( ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) /\ -. x = ( Q ` ( I + 1 ) ) ) -> x e. dom F )  | 
						
						
							| 217 | 
							
								191 216
							 | 
							pm2.61dan | 
							 |-  ( ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) /\ x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) -> x e. dom F )  | 
						
						
							| 218 | 
							
								217
							 | 
							ralrimiva | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> A. x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 219 | 
							
								
							 | 
							dfss3 | 
							 |-  ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F <-> A. x e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) x e. dom F )  | 
						
						
							| 220 | 
							
								218 219
							 | 
							sylibr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F )  | 
						
						
							| 221 | 
							
								1
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> F e. ( dom F -cn-> CC ) )  | 
						
						
							| 222 | 
							
								
							 | 
							rescncf | 
							 |-  ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) C_ dom F -> ( F e. ( dom F -cn-> CC ) -> ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -cn-> CC ) ) )  | 
						
						
							| 223 | 
							
								220 221 222
							 | 
							sylc | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) e. ( ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 224 | 
							
								184 185 186 223
							 | 
							ioccncflimc | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 225 | 
							
								29
							 | 
							leidd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) <_ ( Q ` ( I + 1 ) ) )  | 
						
						
							| 226 | 
							
								69 30 30 7 225
							 | 
							eliocd | 
							 |-  ( ph -> ( Q ` ( I + 1 ) ) e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 227 | 
							
								
							 | 
							fvres | 
							 |-  ( ( Q ` ( I + 1 ) ) e. ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) = ( F ` ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 228 | 
							
								226 227
							 | 
							syl | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) = ( F ` ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 229 | 
							
								228
							 | 
							eqcomd | 
							 |-  ( ph -> ( F ` ( Q ` ( I + 1 ) ) ) = ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 230 | 
							
								
							 | 
							ioossioc | 
							 |-  ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) )  | 
						
						
							| 231 | 
							
								
							 | 
							resabs1 | 
							 |-  ( ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) -> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 232 | 
							
								230 231
							 | 
							ax-mp | 
							 |-  ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 233 | 
							
								232
							 | 
							eqcomi | 
							 |-  ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 234 | 
							
								233
							 | 
							oveq1i | 
							 |-  ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) )  | 
						
						
							| 235 | 
							
								234
							 | 
							a1i | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 236 | 
							
								229 235
							 | 
							eleq12d | 
							 |-  ( ph -> ( ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) <-> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 237 | 
							
								236
							 | 
							adantr | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) <-> ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) ` ( Q ` ( I + 1 ) ) ) e. ( ( ( F |` ( ( Q ` I ) (,] ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 238 | 
							
								224 237
							 | 
							mpbird | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( F ` ( Q ` ( I + 1 ) ) ) e. ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 239 | 
							
								238
							 | 
							ne0d | 
							 |-  ( ( ph /\ ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 240 | 
							
								
							 | 
							mnfxr | 
							 |-  -oo e. RR*  | 
						
						
							| 241 | 
							
								240
							 | 
							a1i | 
							 |-  ( ph -> -oo e. RR* )  | 
						
						
							| 242 | 
							
								24
							 | 
							mnfltd | 
							 |-  ( ph -> -oo < ( Q ` I ) )  | 
						
						
							| 243 | 
							
								241 69 242
							 | 
							xrltled | 
							 |-  ( ph -> -oo <_ ( Q ` I ) )  | 
						
						
							| 244 | 
							
								
							 | 
							iooss1 | 
							 |-  ( ( -oo e. RR* /\ -oo <_ ( Q ` I ) ) -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -oo (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 245 | 
							
								240 243 244
							 | 
							sylancr | 
							 |-  ( ph -> ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) C_ ( -oo (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 246 | 
							
								245
							 | 
							resabs1d | 
							 |-  ( ph -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 247 | 
							
								246
							 | 
							eqcomd | 
							 |-  ( ph -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 248 | 
							
								247
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 249 | 
							
								248
							 | 
							oveq1d | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) = ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 250 | 
							
								
							 | 
							limcresi | 
							 |-  ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) C_ ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) )  | 
						
						
							| 251 | 
							
								29
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR )  | 
						
						
							| 252 | 
							
								
							 | 
							simpl | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ph )  | 
						
						
							| 253 | 
							
								157
							 | 
							a1i | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -u _pi e. RR* )  | 
						
						
							| 254 | 
							
								159
							 | 
							a1i | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> _pi e. RR* )  | 
						
						
							| 255 | 
							
								30
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. RR* )  | 
						
						
							| 256 | 
							
								14 24 29 162 7
							 | 
							lelttrd | 
							 |-  ( ph -> -u _pi < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 257 | 
							
								256
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -u _pi < ( Q ` ( I + 1 ) ) )  | 
						
						
							| 258 | 
							
								163
							 | 
							adantr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) <_ _pi )  | 
						
						
							| 259 | 
							
								253 254 255 257 258
							 | 
							eliocd | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. ( -u _pi (,] _pi ) )  | 
						
						
							| 260 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> -. ( Q ` ( I + 1 ) ) e. dom F )  | 
						
						
							| 261 | 
							
								259 260
							 | 
							eldifd | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) )  | 
						
						
							| 262 | 
							
								252 261
							 | 
							jca | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) )  | 
						
						
							| 263 | 
							
								
							 | 
							eleq1 | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( x e. ( ( -u _pi (,] _pi ) \ dom F ) <-> ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) )  | 
						
						
							| 264 | 
							
								263
							 | 
							anbi2d | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) <-> ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) ) )  | 
						
						
							| 265 | 
							
								
							 | 
							oveq2 | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( -oo (,) x ) = ( -oo (,) ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 266 | 
							
								265
							 | 
							reseq2d | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( F |` ( -oo (,) x ) ) = ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) )  | 
						
						
							| 267 | 
							
								
							 | 
							id | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> x = ( Q ` ( I + 1 ) ) )  | 
						
						
							| 268 | 
							
								266 267
							 | 
							oveq12d | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) = ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) )  | 
						
						
							| 269 | 
							
								268
							 | 
							neeq1d | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) <-> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) )  | 
						
						
							| 270 | 
							
								264 269
							 | 
							imbi12d | 
							 |-  ( x = ( Q ` ( I + 1 ) ) -> ( ( ( ph /\ x e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) x ) ) limCC x ) =/= (/) ) <-> ( ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) ) )  | 
						
						
							| 271 | 
							
								270 3
							 | 
							vtoclg | 
							 |-  ( ( Q ` ( I + 1 ) ) e. RR -> ( ( ph /\ ( Q ` ( I + 1 ) ) e. ( ( -u _pi (,] _pi ) \ dom F ) ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) )  | 
						
						
							| 272 | 
							
								251 262 271
							 | 
							sylc | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 273 | 
							
								
							 | 
							ssn0 | 
							 |-  ( ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) C_ ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) /\ ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) -> ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 274 | 
							
								250 272 273
							 | 
							sylancr | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( ( F |` ( -oo (,) ( Q ` ( I + 1 ) ) ) ) |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 275 | 
							
								249 274
							 | 
							eqnetrd | 
							 |-  ( ( ph /\ -. ( Q ` ( I + 1 ) ) e. dom F ) -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 276 | 
							
								239 275
							 | 
							pm2.61dan | 
							 |-  ( ph -> ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) )  | 
						
						
							| 277 | 
							
								183 276
							 | 
							jca | 
							 |-  ( ph -> ( ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` I ) ) =/= (/) /\ ( ( F |` ( ( Q ` I ) (,) ( Q ` ( I + 1 ) ) ) ) limCC ( Q ` ( I + 1 ) ) ) =/= (/) ) )  |