Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem48.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem48.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem48.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem48.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
5 |
|
fourierdlem48.t |
|- T = ( B - A ) |
6 |
|
fourierdlem48.m |
|- ( ph -> M e. NN ) |
7 |
|
fourierdlem48.q |
|- ( ph -> Q e. ( P ` M ) ) |
8 |
|
fourierdlem48.f |
|- ( ph -> F : D --> RR ) |
9 |
|
fourierdlem48.dper |
|- ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) |
10 |
|
fourierdlem48.per |
|- ( ( ph /\ x e. D /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
11 |
|
fourierdlem48.cn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
12 |
|
fourierdlem48.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
13 |
|
fourierdlem48.x |
|- ( ph -> X e. RR ) |
14 |
|
fourierdlem48.z |
|- Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
15 |
|
fourierdlem48.e |
|- E = ( x e. RR |-> ( x + ( Z ` x ) ) ) |
16 |
|
fourierdlem48.ch |
|- ( ch <-> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ y = ( X + ( k x. T ) ) ) ) |
17 |
|
simpl |
|- ( ( ph /\ ( E ` X ) = B ) -> ph ) |
18 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
19 |
6
|
nnzd |
|- ( ph -> M e. ZZ ) |
20 |
6
|
nngt0d |
|- ( ph -> 0 < M ) |
21 |
|
fzolb |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
22 |
18 19 20 21
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
23 |
22
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> 0 e. ( 0 ..^ M ) ) |
24 |
2 13
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
25 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
26 |
5 25
|
eqeltrid |
|- ( ph -> T e. RR ) |
27 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
28 |
3 27
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
29 |
28 5
|
breqtrrdi |
|- ( ph -> 0 < T ) |
30 |
29
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
31 |
24 26 30
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
32 |
31
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( B - X ) / T ) e. RR ) |
33 |
32
|
flcld |
|- ( ( ph /\ ( E ` X ) = B ) -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
34 |
|
1zzd |
|- ( ( ph /\ ( E ` X ) = B ) -> 1 e. ZZ ) |
35 |
33 34
|
zsubcld |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) e. ZZ ) |
36 |
|
id |
|- ( ( E ` X ) = B -> ( E ` X ) = B ) |
37 |
5
|
a1i |
|- ( ( E ` X ) = B -> T = ( B - A ) ) |
38 |
36 37
|
oveq12d |
|- ( ( E ` X ) = B -> ( ( E ` X ) - T ) = ( B - ( B - A ) ) ) |
39 |
2
|
recnd |
|- ( ph -> B e. CC ) |
40 |
1
|
recnd |
|- ( ph -> A e. CC ) |
41 |
39 40
|
nncand |
|- ( ph -> ( B - ( B - A ) ) = A ) |
42 |
38 41
|
sylan9eqr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( E ` X ) - T ) = A ) |
43 |
4
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
44 |
6 43
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
45 |
7 44
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
46 |
45
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
47 |
|
elmapi |
|- ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR ) |
48 |
46 47
|
syl |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
49 |
6
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
50 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
51 |
49 50
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
52 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
53 |
51 52
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
54 |
48 53
|
ffvelcdmd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
55 |
54
|
rexrd |
|- ( ph -> ( Q ` 0 ) e. RR* ) |
56 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
57 |
|
0le1 |
|- 0 <_ 1 |
58 |
57
|
a1i |
|- ( ph -> 0 <_ 1 ) |
59 |
6
|
nnge1d |
|- ( ph -> 1 <_ M ) |
60 |
18 19 56 58 59
|
elfzd |
|- ( ph -> 1 e. ( 0 ... M ) ) |
61 |
48 60
|
ffvelcdmd |
|- ( ph -> ( Q ` 1 ) e. RR ) |
62 |
61
|
rexrd |
|- ( ph -> ( Q ` 1 ) e. RR* ) |
63 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
64 |
45
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
65 |
64
|
simplld |
|- ( ph -> ( Q ` 0 ) = A ) |
66 |
1
|
leidd |
|- ( ph -> A <_ A ) |
67 |
65 66
|
eqbrtrd |
|- ( ph -> ( Q ` 0 ) <_ A ) |
68 |
65
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
69 |
|
0re |
|- 0 e. RR |
70 |
|
eleq1 |
|- ( i = 0 -> ( i e. ( 0 ..^ M ) <-> 0 e. ( 0 ..^ M ) ) ) |
71 |
70
|
anbi2d |
|- ( i = 0 -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ 0 e. ( 0 ..^ M ) ) ) ) |
72 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
73 |
|
oveq1 |
|- ( i = 0 -> ( i + 1 ) = ( 0 + 1 ) ) |
74 |
73
|
fveq2d |
|- ( i = 0 -> ( Q ` ( i + 1 ) ) = ( Q ` ( 0 + 1 ) ) ) |
75 |
72 74
|
breq12d |
|- ( i = 0 -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
76 |
71 75
|
imbi12d |
|- ( i = 0 -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) ) |
77 |
45
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
78 |
77
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
79 |
76 78
|
vtoclg |
|- ( 0 e. RR -> ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) ) |
80 |
69 79
|
ax-mp |
|- ( ( ph /\ 0 e. ( 0 ..^ M ) ) -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
81 |
22 80
|
mpdan |
|- ( ph -> ( Q ` 0 ) < ( Q ` ( 0 + 1 ) ) ) |
82 |
|
1e0p1 |
|- 1 = ( 0 + 1 ) |
83 |
82
|
fveq2i |
|- ( Q ` 1 ) = ( Q ` ( 0 + 1 ) ) |
84 |
81 83
|
breqtrrdi |
|- ( ph -> ( Q ` 0 ) < ( Q ` 1 ) ) |
85 |
68 84
|
eqbrtrd |
|- ( ph -> A < ( Q ` 1 ) ) |
86 |
55 62 63 67 85
|
elicod |
|- ( ph -> A e. ( ( Q ` 0 ) [,) ( Q ` 1 ) ) ) |
87 |
83
|
oveq2i |
|- ( ( Q ` 0 ) [,) ( Q ` 1 ) ) = ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) |
88 |
86 87
|
eleqtrdi |
|- ( ph -> A e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) ) |
89 |
88
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> A e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) ) |
90 |
42 89
|
eqeltrd |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) ) |
91 |
15
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( Z ` x ) ) ) ) |
92 |
|
id |
|- ( x = X -> x = X ) |
93 |
|
fveq2 |
|- ( x = X -> ( Z ` x ) = ( Z ` X ) ) |
94 |
92 93
|
oveq12d |
|- ( x = X -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
95 |
94
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( Z ` x ) ) = ( X + ( Z ` X ) ) ) |
96 |
14
|
a1i |
|- ( ph -> Z = ( x e. RR |-> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
97 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
98 |
97
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
99 |
98
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
100 |
99
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
101 |
100
|
adantl |
|- ( ( ph /\ x = X ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
102 |
31
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
103 |
102
|
zred |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
104 |
103 26
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
105 |
96 101 13 104
|
fvmptd |
|- ( ph -> ( Z ` X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
106 |
105 104
|
eqeltrd |
|- ( ph -> ( Z ` X ) e. RR ) |
107 |
13 106
|
readdcld |
|- ( ph -> ( X + ( Z ` X ) ) e. RR ) |
108 |
91 95 13 107
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( Z ` X ) ) ) |
109 |
105
|
oveq2d |
|- ( ph -> ( X + ( Z ` X ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
110 |
108 109
|
eqtrd |
|- ( ph -> ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
111 |
110
|
oveq1d |
|- ( ph -> ( ( E ` X ) - T ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - T ) ) |
112 |
13
|
recnd |
|- ( ph -> X e. CC ) |
113 |
104
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
114 |
26
|
recnd |
|- ( ph -> T e. CC ) |
115 |
112 113 114
|
addsubassd |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - T ) ) ) |
116 |
102
|
zcnd |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. CC ) |
117 |
116 114
|
mulsubfacd |
|- ( ph -> ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) |
118 |
117
|
oveq2d |
|- ( ph -> ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) x. T ) - T ) ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
119 |
111 115 118
|
3eqtrd |
|- ( ph -> ( ( E ` X ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
120 |
119
|
adantr |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( E ` X ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
121 |
|
oveq1 |
|- ( k = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) -> ( k x. T ) = ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) |
122 |
121
|
oveq2d |
|- ( k = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) -> ( X + ( k x. T ) ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) |
123 |
122
|
eqeq2d |
|- ( k = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) -> ( ( ( E ` X ) - T ) = ( X + ( k x. T ) ) <-> ( ( E ` X ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) ) |
124 |
123
|
anbi2d |
|- ( k = ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) -> ( ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) <-> ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) ) ) |
125 |
124
|
rspcev |
|- ( ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) e. ZZ /\ ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( ( ( |_ ` ( ( B - X ) / T ) ) - 1 ) x. T ) ) ) ) -> E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) |
126 |
35 90 120 125
|
syl12anc |
|- ( ( ph /\ ( E ` X ) = B ) -> E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) |
127 |
72 74
|
oveq12d |
|- ( i = 0 -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) ) |
128 |
127
|
eleq2d |
|- ( i = 0 -> ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) ) ) |
129 |
128
|
anbi1d |
|- ( i = 0 -> ( ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) <-> ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) ) |
130 |
129
|
rexbidv |
|- ( i = 0 -> ( E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) <-> E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) ) |
131 |
130
|
rspcev |
|- ( ( 0 e. ( 0 ..^ M ) /\ E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` 0 ) [,) ( Q ` ( 0 + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) -> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) |
132 |
23 126 131
|
syl2anc |
|- ( ( ph /\ ( E ` X ) = B ) -> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) |
133 |
|
ovex |
|- ( ( E ` X ) - T ) e. _V |
134 |
|
eleq1 |
|- ( y = ( ( E ` X ) - T ) -> ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
135 |
|
eqeq1 |
|- ( y = ( ( E ` X ) - T ) -> ( y = ( X + ( k x. T ) ) <-> ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) |
136 |
134 135
|
anbi12d |
|- ( y = ( ( E ` X ) - T ) -> ( ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) <-> ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) ) |
137 |
136
|
2rexbidv |
|- ( y = ( ( E ` X ) - T ) -> ( E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) <-> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) ) |
138 |
137
|
anbi2d |
|- ( y = ( ( E ` X ) - T ) -> ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) <-> ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) ) ) |
139 |
138
|
imbi1d |
|- ( y = ( ( E ` X ) - T ) -> ( ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) <-> ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) ) |
140 |
|
simpr |
|- ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) |
141 |
|
nfv |
|- F/ i ph |
142 |
|
nfre1 |
|- F/ i E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) |
143 |
141 142
|
nfan |
|- F/ i ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) |
144 |
|
nfv |
|- F/ k ph |
145 |
|
nfcv |
|- F/_ k ( 0 ..^ M ) |
146 |
|
nfre1 |
|- F/ k E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) |
147 |
145 146
|
nfrexw |
|- F/ k E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) |
148 |
144 147
|
nfan |
|- F/ k ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) |
149 |
|
simp1 |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ph ) |
150 |
|
simp2l |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> i e. ( 0 ..^ M ) ) |
151 |
|
simp3l |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
152 |
149 150 151
|
jca31 |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
153 |
|
simp2r |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> k e. ZZ ) |
154 |
|
simp3r |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> y = ( X + ( k x. T ) ) ) |
155 |
16
|
biimpi |
|- ( ch -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ y = ( X + ( k x. T ) ) ) ) |
156 |
155
|
simplld |
|- ( ch -> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
157 |
156
|
simplld |
|- ( ch -> ph ) |
158 |
|
frel |
|- ( F : D --> RR -> Rel F ) |
159 |
|
resindm |
|- ( Rel F -> ( F |` ( ( X (,) +oo ) i^i dom F ) ) = ( F |` ( X (,) +oo ) ) ) |
160 |
159
|
eqcomd |
|- ( Rel F -> ( F |` ( X (,) +oo ) ) = ( F |` ( ( X (,) +oo ) i^i dom F ) ) ) |
161 |
157 8 158 160
|
4syl |
|- ( ch -> ( F |` ( X (,) +oo ) ) = ( F |` ( ( X (,) +oo ) i^i dom F ) ) ) |
162 |
|
fdm |
|- ( F : D --> RR -> dom F = D ) |
163 |
157 8 162
|
3syl |
|- ( ch -> dom F = D ) |
164 |
163
|
ineq2d |
|- ( ch -> ( ( X (,) +oo ) i^i dom F ) = ( ( X (,) +oo ) i^i D ) ) |
165 |
164
|
reseq2d |
|- ( ch -> ( F |` ( ( X (,) +oo ) i^i dom F ) ) = ( F |` ( ( X (,) +oo ) i^i D ) ) ) |
166 |
161 165
|
eqtrd |
|- ( ch -> ( F |` ( X (,) +oo ) ) = ( F |` ( ( X (,) +oo ) i^i D ) ) ) |
167 |
166
|
oveq1d |
|- ( ch -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( F |` ( ( X (,) +oo ) i^i D ) ) limCC X ) ) |
168 |
157 8
|
syl |
|- ( ch -> F : D --> RR ) |
169 |
|
ax-resscn |
|- RR C_ CC |
170 |
169
|
a1i |
|- ( ch -> RR C_ CC ) |
171 |
168 170
|
fssd |
|- ( ch -> F : D --> CC ) |
172 |
|
inss2 |
|- ( ( X (,) +oo ) i^i D ) C_ D |
173 |
172
|
a1i |
|- ( ch -> ( ( X (,) +oo ) i^i D ) C_ D ) |
174 |
171 173
|
fssresd |
|- ( ch -> ( F |` ( ( X (,) +oo ) i^i D ) ) : ( ( X (,) +oo ) i^i D ) --> CC ) |
175 |
|
pnfxr |
|- +oo e. RR* |
176 |
175
|
a1i |
|- ( ch -> +oo e. RR* ) |
177 |
156
|
simplrd |
|- ( ch -> i e. ( 0 ..^ M ) ) |
178 |
48
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
179 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
180 |
179
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
181 |
178 180
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
182 |
157 177 181
|
syl2anc |
|- ( ch -> ( Q ` ( i + 1 ) ) e. RR ) |
183 |
155
|
simplrd |
|- ( ch -> k e. ZZ ) |
184 |
183
|
zred |
|- ( ch -> k e. RR ) |
185 |
157 26
|
syl |
|- ( ch -> T e. RR ) |
186 |
184 185
|
remulcld |
|- ( ch -> ( k x. T ) e. RR ) |
187 |
182 186
|
resubcld |
|- ( ch -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR ) |
188 |
187
|
rexrd |
|- ( ch -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
189 |
187
|
ltpnfd |
|- ( ch -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) < +oo ) |
190 |
188 176 189
|
xrltled |
|- ( ch -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) <_ +oo ) |
191 |
|
iooss2 |
|- ( ( +oo e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) <_ +oo ) -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ ( X (,) +oo ) ) |
192 |
176 190 191
|
syl2anc |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ ( X (,) +oo ) ) |
193 |
183
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> k e. ZZ ) |
194 |
193
|
zcnd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> k e. CC ) |
195 |
185
|
recnd |
|- ( ch -> T e. CC ) |
196 |
195
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> T e. CC ) |
197 |
194 196
|
mulneg1d |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( -u k x. T ) = -u ( k x. T ) ) |
198 |
197
|
oveq2d |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) = ( ( w + ( k x. T ) ) + -u ( k x. T ) ) ) |
199 |
|
elioore |
|- ( w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> w e. RR ) |
200 |
199
|
recnd |
|- ( w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> w e. CC ) |
201 |
200
|
adantl |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. CC ) |
202 |
194 196
|
mulcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( k x. T ) e. CC ) |
203 |
201 202
|
addcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. CC ) |
204 |
203 202
|
negsubd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + -u ( k x. T ) ) = ( ( w + ( k x. T ) ) - ( k x. T ) ) ) |
205 |
201 202
|
pncand |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) - ( k x. T ) ) = w ) |
206 |
198 204 205
|
3eqtrrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w = ( ( w + ( k x. T ) ) + ( -u k x. T ) ) ) |
207 |
157
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ph ) |
208 |
156
|
simpld |
|- ( ch -> ( ph /\ i e. ( 0 ..^ M ) ) ) |
209 |
|
cncff |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
210 |
|
fdm |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
211 |
11 209 210
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
212 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
213 |
211 212
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
214 |
8 162
|
syl |
|- ( ph -> dom F = D ) |
215 |
214
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = D ) |
216 |
213 215
|
sseqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
217 |
208 216
|
syl |
|- ( ch -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
218 |
217
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
219 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
220 |
219
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
221 |
178 220
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
222 |
157 177 221
|
syl2anc |
|- ( ch -> ( Q ` i ) e. RR ) |
223 |
222
|
rexrd |
|- ( ch -> ( Q ` i ) e. RR* ) |
224 |
223
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` i ) e. RR* ) |
225 |
182
|
rexrd |
|- ( ch -> ( Q ` ( i + 1 ) ) e. RR* ) |
226 |
225
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
227 |
199
|
adantl |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. RR ) |
228 |
193
|
zred |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> k e. RR ) |
229 |
207 26
|
syl |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> T e. RR ) |
230 |
228 229
|
remulcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( k x. T ) e. RR ) |
231 |
227 230
|
readdcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. RR ) |
232 |
222
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` i ) e. RR ) |
233 |
157 13
|
syl |
|- ( ch -> X e. RR ) |
234 |
233 186
|
readdcld |
|- ( ch -> ( X + ( k x. T ) ) e. RR ) |
235 |
234
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( X + ( k x. T ) ) e. RR ) |
236 |
16
|
simprbi |
|- ( ch -> y = ( X + ( k x. T ) ) ) |
237 |
236
|
eqcomd |
|- ( ch -> ( X + ( k x. T ) ) = y ) |
238 |
156
|
simprd |
|- ( ch -> y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
239 |
237 238
|
eqeltrd |
|- ( ch -> ( X + ( k x. T ) ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
240 |
|
icogelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( X + ( k x. T ) ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ ( X + ( k x. T ) ) ) |
241 |
223 225 239 240
|
syl3anc |
|- ( ch -> ( Q ` i ) <_ ( X + ( k x. T ) ) ) |
242 |
241
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` i ) <_ ( X + ( k x. T ) ) ) |
243 |
207 13
|
syl |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X e. RR ) |
244 |
243
|
rexrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X e. RR* ) |
245 |
182
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
246 |
245 230
|
resubcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR ) |
247 |
246
|
rexrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
248 |
|
simpr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
249 |
|
ioogtlb |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X < w ) |
250 |
244 247 248 249
|
syl3anc |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X < w ) |
251 |
243 227 230 250
|
ltadd1dd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( X + ( k x. T ) ) < ( w + ( k x. T ) ) ) |
252 |
232 235 231 242 251
|
lelttrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( Q ` i ) < ( w + ( k x. T ) ) ) |
253 |
|
iooltub |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
254 |
244 247 248 253
|
syl3anc |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
255 |
227 246 230 254
|
ltadd1dd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) < ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) ) |
256 |
182
|
recnd |
|- ( ch -> ( Q ` ( i + 1 ) ) e. CC ) |
257 |
186
|
recnd |
|- ( ch -> ( k x. T ) e. CC ) |
258 |
256 257
|
npcand |
|- ( ch -> ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) = ( Q ` ( i + 1 ) ) ) |
259 |
258
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) = ( Q ` ( i + 1 ) ) ) |
260 |
255 259
|
breqtrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) < ( Q ` ( i + 1 ) ) ) |
261 |
224 226 231 252 260
|
eliood |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
262 |
218 261
|
sseldd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. D ) |
263 |
193
|
znegcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> -u k e. ZZ ) |
264 |
|
ovex |
|- ( w + ( k x. T ) ) e. _V |
265 |
|
eleq1 |
|- ( x = ( w + ( k x. T ) ) -> ( x e. D <-> ( w + ( k x. T ) ) e. D ) ) |
266 |
265
|
3anbi2d |
|- ( x = ( w + ( k x. T ) ) -> ( ( ph /\ x e. D /\ -u k e. ZZ ) <-> ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) ) ) |
267 |
|
oveq1 |
|- ( x = ( w + ( k x. T ) ) -> ( x + ( -u k x. T ) ) = ( ( w + ( k x. T ) ) + ( -u k x. T ) ) ) |
268 |
267
|
eleq1d |
|- ( x = ( w + ( k x. T ) ) -> ( ( x + ( -u k x. T ) ) e. D <-> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) ) |
269 |
266 268
|
imbi12d |
|- ( x = ( w + ( k x. T ) ) -> ( ( ( ph /\ x e. D /\ -u k e. ZZ ) -> ( x + ( -u k x. T ) ) e. D ) <-> ( ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) ) ) |
270 |
|
negex |
|- -u k e. _V |
271 |
|
eleq1 |
|- ( j = -u k -> ( j e. ZZ <-> -u k e. ZZ ) ) |
272 |
271
|
3anbi3d |
|- ( j = -u k -> ( ( ph /\ x e. D /\ j e. ZZ ) <-> ( ph /\ x e. D /\ -u k e. ZZ ) ) ) |
273 |
|
oveq1 |
|- ( j = -u k -> ( j x. T ) = ( -u k x. T ) ) |
274 |
273
|
oveq2d |
|- ( j = -u k -> ( x + ( j x. T ) ) = ( x + ( -u k x. T ) ) ) |
275 |
274
|
eleq1d |
|- ( j = -u k -> ( ( x + ( j x. T ) ) e. D <-> ( x + ( -u k x. T ) ) e. D ) ) |
276 |
272 275
|
imbi12d |
|- ( j = -u k -> ( ( ( ph /\ x e. D /\ j e. ZZ ) -> ( x + ( j x. T ) ) e. D ) <-> ( ( ph /\ x e. D /\ -u k e. ZZ ) -> ( x + ( -u k x. T ) ) e. D ) ) ) |
277 |
|
eleq1 |
|- ( k = j -> ( k e. ZZ <-> j e. ZZ ) ) |
278 |
277
|
3anbi3d |
|- ( k = j -> ( ( ph /\ x e. D /\ k e. ZZ ) <-> ( ph /\ x e. D /\ j e. ZZ ) ) ) |
279 |
|
oveq1 |
|- ( k = j -> ( k x. T ) = ( j x. T ) ) |
280 |
279
|
oveq2d |
|- ( k = j -> ( x + ( k x. T ) ) = ( x + ( j x. T ) ) ) |
281 |
280
|
eleq1d |
|- ( k = j -> ( ( x + ( k x. T ) ) e. D <-> ( x + ( j x. T ) ) e. D ) ) |
282 |
278 281
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. D ) <-> ( ( ph /\ x e. D /\ j e. ZZ ) -> ( x + ( j x. T ) ) e. D ) ) ) |
283 |
282 9
|
chvarvv |
|- ( ( ph /\ x e. D /\ j e. ZZ ) -> ( x + ( j x. T ) ) e. D ) |
284 |
270 276 283
|
vtocl |
|- ( ( ph /\ x e. D /\ -u k e. ZZ ) -> ( x + ( -u k x. T ) ) e. D ) |
285 |
264 269 284
|
vtocl |
|- ( ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) |
286 |
207 262 263 285
|
syl3anc |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) |
287 |
206 286
|
eqeltrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. D ) |
288 |
287
|
ralrimiva |
|- ( ch -> A. w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w e. D ) |
289 |
|
dfss3 |
|- ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ D <-> A. w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w e. D ) |
290 |
288 289
|
sylibr |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ D ) |
291 |
192 290
|
ssind |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ ( ( X (,) +oo ) i^i D ) ) |
292 |
|
ioosscn |
|- ( X (,) +oo ) C_ CC |
293 |
|
ssinss1 |
|- ( ( X (,) +oo ) C_ CC -> ( ( X (,) +oo ) i^i D ) C_ CC ) |
294 |
292 293
|
mp1i |
|- ( ch -> ( ( X (,) +oo ) i^i D ) C_ CC ) |
295 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
296 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
297 |
233
|
rexrd |
|- ( ch -> X e. RR* ) |
298 |
233
|
leidd |
|- ( ch -> X <_ X ) |
299 |
236
|
oveq1d |
|- ( ch -> ( y - ( k x. T ) ) = ( ( X + ( k x. T ) ) - ( k x. T ) ) ) |
300 |
233
|
recnd |
|- ( ch -> X e. CC ) |
301 |
300 257
|
pncand |
|- ( ch -> ( ( X + ( k x. T ) ) - ( k x. T ) ) = X ) |
302 |
299 301
|
eqtr2d |
|- ( ch -> X = ( y - ( k x. T ) ) ) |
303 |
|
icossre |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR* ) -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
304 |
222 225 303
|
syl2anc |
|- ( ch -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
305 |
304 238
|
sseldd |
|- ( ch -> y e. RR ) |
306 |
|
icoltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> y < ( Q ` ( i + 1 ) ) ) |
307 |
223 225 238 306
|
syl3anc |
|- ( ch -> y < ( Q ` ( i + 1 ) ) ) |
308 |
305 182 186 307
|
ltsub1dd |
|- ( ch -> ( y - ( k x. T ) ) < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
309 |
302 308
|
eqbrtrd |
|- ( ch -> X < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
310 |
297 188 297 298 309
|
elicod |
|- ( ch -> X e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
311 |
|
snunioo1 |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ X < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) u. { X } ) = ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
312 |
297 188 309 311
|
syl3anc |
|- ( ch -> ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) u. { X } ) = ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
313 |
312
|
fveq2d |
|- ( ch -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) u. { X } ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) ) |
314 |
295
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
315 |
|
ovex |
|- ( X (,) +oo ) e. _V |
316 |
315
|
inex1 |
|- ( ( X (,) +oo ) i^i D ) e. _V |
317 |
|
snex |
|- { X } e. _V |
318 |
316 317
|
unex |
|- ( ( ( X (,) +oo ) i^i D ) u. { X } ) e. _V |
319 |
|
resttop |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( ( X (,) +oo ) i^i D ) u. { X } ) e. _V ) -> ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. Top ) |
320 |
314 318 319
|
mp2an |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. Top |
321 |
320
|
a1i |
|- ( ch -> ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. Top ) |
322 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
323 |
322
|
a1i |
|- ( ch -> ( topGen ` ran (,) ) e. Top ) |
324 |
318
|
a1i |
|- ( ch -> ( ( ( X (,) +oo ) i^i D ) u. { X } ) e. _V ) |
325 |
|
iooretop |
|- ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) e. ( topGen ` ran (,) ) |
326 |
325
|
a1i |
|- ( ch -> ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) e. ( topGen ` ran (,) ) ) |
327 |
|
elrestr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( ( X (,) +oo ) i^i D ) u. { X } ) e. _V /\ ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) e. ( topGen ` ran (,) ) ) -> ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
328 |
323 324 326 327
|
syl3anc |
|- ( ch -> ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. ( ( topGen ` ran (,) ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
329 |
|
mnfxr |
|- -oo e. RR* |
330 |
329
|
a1i |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> -oo e. RR* ) |
331 |
188
|
adantr |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
332 |
|
icossre |
|- ( ( X e. RR /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) -> ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ RR ) |
333 |
233 188 332
|
syl2anc |
|- ( ch -> ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ RR ) |
334 |
333
|
sselda |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. RR ) |
335 |
334
|
mnfltd |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> -oo < x ) |
336 |
297
|
adantr |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X e. RR* ) |
337 |
|
simpr |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
338 |
|
icoltub |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
339 |
336 331 337 338
|
syl3anc |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
340 |
330 331 334 335 339
|
eliood |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
341 |
|
vsnid |
|- x e. { x } |
342 |
341
|
a1i |
|- ( x = X -> x e. { x } ) |
343 |
|
sneq |
|- ( x = X -> { x } = { X } ) |
344 |
342 343
|
eleqtrd |
|- ( x = X -> x e. { X } ) |
345 |
|
elun2 |
|- ( x e. { X } -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
346 |
344 345
|
syl |
|- ( x = X -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
347 |
346
|
adantl |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ x = X ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
348 |
297
|
ad2antrr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> X e. RR* ) |
349 |
175
|
a1i |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> +oo e. RR* ) |
350 |
334
|
adantr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. RR ) |
351 |
233
|
ad2antrr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> X e. RR ) |
352 |
|
icogelb |
|- ( ( X e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X <_ x ) |
353 |
336 331 337 352
|
syl3anc |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> X <_ x ) |
354 |
353
|
adantr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> X <_ x ) |
355 |
|
neqne |
|- ( -. x = X -> x =/= X ) |
356 |
355
|
adantl |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x =/= X ) |
357 |
351 350 354 356
|
leneltd |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> X < x ) |
358 |
350
|
ltpnfd |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x < +oo ) |
359 |
348 349 350 357 358
|
eliood |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. ( X (,) +oo ) ) |
360 |
183
|
zcnd |
|- ( ch -> k e. CC ) |
361 |
360 195
|
mulneg1d |
|- ( ch -> ( -u k x. T ) = -u ( k x. T ) ) |
362 |
361
|
oveq2d |
|- ( ch -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) = ( ( w + ( k x. T ) ) + -u ( k x. T ) ) ) |
363 |
362
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) = ( ( w + ( k x. T ) ) + -u ( k x. T ) ) ) |
364 |
|
ioosscn |
|- ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ CC |
365 |
364
|
sseli |
|- ( w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> w e. CC ) |
366 |
365
|
adantl |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. CC ) |
367 |
257
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( k x. T ) e. CC ) |
368 |
366 367
|
addcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. CC ) |
369 |
368 367
|
negsubd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + -u ( k x. T ) ) = ( ( w + ( k x. T ) ) - ( k x. T ) ) ) |
370 |
366 367
|
pncand |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) - ( k x. T ) ) = w ) |
371 |
363 369 370
|
3eqtrrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w = ( ( w + ( k x. T ) ) + ( -u k x. T ) ) ) |
372 |
186
|
adantr |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( k x. T ) e. RR ) |
373 |
227 372
|
readdcld |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. RR ) |
374 |
224 226 373 252 260
|
eliood |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
375 |
218 374
|
sseldd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. D ) |
376 |
271
|
3anbi3d |
|- ( j = -u k -> ( ( ph /\ ( w + ( k x. T ) ) e. D /\ j e. ZZ ) <-> ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) ) ) |
377 |
273
|
oveq2d |
|- ( j = -u k -> ( ( w + ( k x. T ) ) + ( j x. T ) ) = ( ( w + ( k x. T ) ) + ( -u k x. T ) ) ) |
378 |
377
|
eleq1d |
|- ( j = -u k -> ( ( ( w + ( k x. T ) ) + ( j x. T ) ) e. D <-> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) ) |
379 |
376 378
|
imbi12d |
|- ( j = -u k -> ( ( ( ph /\ ( w + ( k x. T ) ) e. D /\ j e. ZZ ) -> ( ( w + ( k x. T ) ) + ( j x. T ) ) e. D ) <-> ( ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) ) ) |
380 |
265
|
3anbi2d |
|- ( x = ( w + ( k x. T ) ) -> ( ( ph /\ x e. D /\ j e. ZZ ) <-> ( ph /\ ( w + ( k x. T ) ) e. D /\ j e. ZZ ) ) ) |
381 |
|
oveq1 |
|- ( x = ( w + ( k x. T ) ) -> ( x + ( j x. T ) ) = ( ( w + ( k x. T ) ) + ( j x. T ) ) ) |
382 |
381
|
eleq1d |
|- ( x = ( w + ( k x. T ) ) -> ( ( x + ( j x. T ) ) e. D <-> ( ( w + ( k x. T ) ) + ( j x. T ) ) e. D ) ) |
383 |
380 382
|
imbi12d |
|- ( x = ( w + ( k x. T ) ) -> ( ( ( ph /\ x e. D /\ j e. ZZ ) -> ( x + ( j x. T ) ) e. D ) <-> ( ( ph /\ ( w + ( k x. T ) ) e. D /\ j e. ZZ ) -> ( ( w + ( k x. T ) ) + ( j x. T ) ) e. D ) ) ) |
384 |
264 383 283
|
vtocl |
|- ( ( ph /\ ( w + ( k x. T ) ) e. D /\ j e. ZZ ) -> ( ( w + ( k x. T ) ) + ( j x. T ) ) e. D ) |
385 |
270 379 384
|
vtocl |
|- ( ( ph /\ ( w + ( k x. T ) ) e. D /\ -u k e. ZZ ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) |
386 |
207 375 263 385
|
syl3anc |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( w + ( k x. T ) ) + ( -u k x. T ) ) e. D ) |
387 |
371 386
|
eqeltrd |
|- ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> w e. D ) |
388 |
387
|
ralrimiva |
|- ( ch -> A. w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w e. D ) |
389 |
388 289
|
sylibr |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ D ) |
390 |
389
|
ad2antrr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ D ) |
391 |
188
|
ad2antrr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
392 |
339
|
adantr |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
393 |
348 391 350 357 392
|
eliood |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
394 |
390 393
|
sseldd |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. D ) |
395 |
359 394
|
elind |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. ( ( X (,) +oo ) i^i D ) ) |
396 |
|
elun1 |
|- ( x e. ( ( X (,) +oo ) i^i D ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
397 |
395 396
|
syl |
|- ( ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) /\ -. x = X ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
398 |
347 397
|
pm2.61dan |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
399 |
340 398
|
elind |
|- ( ( ch /\ x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
400 |
297
|
adantr |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> X e. RR* ) |
401 |
188
|
adantr |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
402 |
|
elinel1 |
|- ( x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) -> x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
403 |
|
elioore |
|- ( x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> x e. RR ) |
404 |
402 403
|
syl |
|- ( x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) -> x e. RR ) |
405 |
404
|
rexrd |
|- ( x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) -> x e. RR* ) |
406 |
405
|
adantl |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> x e. RR* ) |
407 |
|
elinel2 |
|- ( x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
408 |
233
|
adantr |
|- ( ( ch /\ x = X ) -> X e. RR ) |
409 |
92
|
eqcomd |
|- ( x = X -> X = x ) |
410 |
409
|
adantl |
|- ( ( ch /\ x = X ) -> X = x ) |
411 |
408 410
|
eqled |
|- ( ( ch /\ x = X ) -> X <_ x ) |
412 |
411
|
adantlr |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ x = X ) -> X <_ x ) |
413 |
|
simpll |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> ch ) |
414 |
|
simplr |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) |
415 |
|
id |
|- ( -. x = X -> -. x = X ) |
416 |
|
velsn |
|- ( x e. { X } <-> x = X ) |
417 |
415 416
|
sylnibr |
|- ( -. x = X -> -. x e. { X } ) |
418 |
417
|
adantl |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> -. x e. { X } ) |
419 |
|
elunnel2 |
|- ( ( x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) /\ -. x e. { X } ) -> x e. ( ( X (,) +oo ) i^i D ) ) |
420 |
414 418 419
|
syl2anc |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> x e. ( ( X (,) +oo ) i^i D ) ) |
421 |
|
elinel1 |
|- ( x e. ( ( X (,) +oo ) i^i D ) -> x e. ( X (,) +oo ) ) |
422 |
420 421
|
syl |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> x e. ( X (,) +oo ) ) |
423 |
233
|
adantr |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> X e. RR ) |
424 |
|
elioore |
|- ( x e. ( X (,) +oo ) -> x e. RR ) |
425 |
424
|
adantl |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> x e. RR ) |
426 |
297
|
adantr |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> X e. RR* ) |
427 |
175
|
a1i |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> +oo e. RR* ) |
428 |
|
simpr |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> x e. ( X (,) +oo ) ) |
429 |
|
ioogtlb |
|- ( ( X e. RR* /\ +oo e. RR* /\ x e. ( X (,) +oo ) ) -> X < x ) |
430 |
426 427 428 429
|
syl3anc |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> X < x ) |
431 |
423 425 430
|
ltled |
|- ( ( ch /\ x e. ( X (,) +oo ) ) -> X <_ x ) |
432 |
413 422 431
|
syl2anc |
|- ( ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) /\ -. x = X ) -> X <_ x ) |
433 |
412 432
|
pm2.61dan |
|- ( ( ch /\ x e. ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) -> X <_ x ) |
434 |
407 433
|
sylan2 |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> X <_ x ) |
435 |
329
|
a1i |
|- ( ( ch /\ x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> -oo e. RR* ) |
436 |
188
|
adantr |
|- ( ( ch /\ x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* ) |
437 |
|
simpr |
|- ( ( ch /\ x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
438 |
|
iooltub |
|- ( ( -oo e. RR* /\ ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) e. RR* /\ x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
439 |
435 436 437 438
|
syl3anc |
|- ( ( ch /\ x e. ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
440 |
402 439
|
sylan2 |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> x < ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
441 |
400 401 406 434 440
|
elicod |
|- ( ( ch /\ x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
442 |
399 441
|
impbida |
|- ( ch -> ( x e. ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) <-> x e. ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ) |
443 |
442
|
eqrdv |
|- ( ch -> ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) = ( ( -oo (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) i^i ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
444 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
445 |
|
ssinss1 |
|- ( ( X (,) +oo ) C_ RR -> ( ( X (,) +oo ) i^i D ) C_ RR ) |
446 |
444 445
|
mp1i |
|- ( ch -> ( ( X (,) +oo ) i^i D ) C_ RR ) |
447 |
233
|
snssd |
|- ( ch -> { X } C_ RR ) |
448 |
446 447
|
unssd |
|- ( ch -> ( ( ( X (,) +oo ) i^i D ) u. { X } ) C_ RR ) |
449 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
450 |
295 449
|
rerest |
|- ( ( ( ( X (,) +oo ) i^i D ) u. { X } ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
451 |
448 450
|
syl |
|- ( ch -> ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) = ( ( topGen ` ran (,) ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
452 |
328 443 451
|
3eltr4d |
|- ( ch -> ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) |
453 |
|
isopn3i |
|- ( ( ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) e. Top /\ ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) e. ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) = ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
454 |
321 452 453
|
syl2anc |
|- ( ch -> ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) = ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
455 |
313 454
|
eqtr2d |
|- ( ch -> ( X [,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) u. { X } ) ) ) |
456 |
310 455
|
eleqtrd |
|- ( ch -> X e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( ( X (,) +oo ) i^i D ) u. { X } ) ) ) ` ( ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) u. { X } ) ) ) |
457 |
174 291 294 295 296 456
|
limcres |
|- ( ch -> ( ( ( F |` ( ( X (,) +oo ) i^i D ) ) |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) = ( ( F |` ( ( X (,) +oo ) i^i D ) ) limCC X ) ) |
458 |
291
|
resabs1d |
|- ( ch -> ( ( F |` ( ( X (,) +oo ) i^i D ) ) |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) = ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) ) |
459 |
458
|
oveq1d |
|- ( ch -> ( ( ( F |` ( ( X (,) +oo ) i^i D ) ) |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) = ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) |
460 |
169
|
a1i |
|- ( ph -> RR C_ CC ) |
461 |
8 460
|
fssd |
|- ( ph -> F : D --> CC ) |
462 |
214
|
feq2d |
|- ( ph -> ( F : dom F --> CC <-> F : D --> CC ) ) |
463 |
461 462
|
mpbird |
|- ( ph -> F : dom F --> CC ) |
464 |
157 463
|
syl |
|- ( ch -> F : dom F --> CC ) |
465 |
464
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> F : dom F --> CC ) |
466 |
364
|
a1i |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ CC ) |
467 |
389 163
|
sseqtrrd |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ dom F ) |
468 |
467
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) C_ dom F ) |
469 |
257
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> ( k x. T ) e. CC ) |
470 |
|
eqid |
|- { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } = { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } |
471 |
|
eqeq1 |
|- ( z = w -> ( z = ( x + ( k x. T ) ) <-> w = ( x + ( k x. T ) ) ) ) |
472 |
471
|
rexbidv |
|- ( z = w -> ( E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) <-> E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w = ( x + ( k x. T ) ) ) ) |
473 |
472
|
elrab |
|- ( w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } <-> ( w e. CC /\ E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w = ( x + ( k x. T ) ) ) ) |
474 |
473
|
simprbi |
|- ( w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } -> E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w = ( x + ( k x. T ) ) ) |
475 |
474
|
adantl |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) -> E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w = ( x + ( k x. T ) ) ) |
476 |
|
nfv |
|- F/ x ch |
477 |
|
nfre1 |
|- F/ x E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) |
478 |
|
nfcv |
|- F/_ x CC |
479 |
477 478
|
nfrabw |
|- F/_ x { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } |
480 |
479
|
nfcri |
|- F/ x w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } |
481 |
476 480
|
nfan |
|- F/ x ( ch /\ w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) |
482 |
|
nfv |
|- F/ x w e. D |
483 |
|
simp3 |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) /\ w = ( x + ( k x. T ) ) ) -> w = ( x + ( k x. T ) ) ) |
484 |
|
eleq1 |
|- ( w = x -> ( w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) <-> x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) ) |
485 |
484
|
anbi2d |
|- ( w = x -> ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) <-> ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) ) ) |
486 |
|
oveq1 |
|- ( w = x -> ( w + ( k x. T ) ) = ( x + ( k x. T ) ) ) |
487 |
486
|
eleq1d |
|- ( w = x -> ( ( w + ( k x. T ) ) e. D <-> ( x + ( k x. T ) ) e. D ) ) |
488 |
485 487
|
imbi12d |
|- ( w = x -> ( ( ( ch /\ w e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( w + ( k x. T ) ) e. D ) <-> ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( x + ( k x. T ) ) e. D ) ) ) |
489 |
488 262
|
chvarvv |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( x + ( k x. T ) ) e. D ) |
490 |
489
|
3adant3 |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) /\ w = ( x + ( k x. T ) ) ) -> ( x + ( k x. T ) ) e. D ) |
491 |
483 490
|
eqeltrd |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) /\ w = ( x + ( k x. T ) ) ) -> w e. D ) |
492 |
491
|
3exp |
|- ( ch -> ( x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> ( w = ( x + ( k x. T ) ) -> w e. D ) ) ) |
493 |
492
|
adantr |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) -> ( x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) -> ( w = ( x + ( k x. T ) ) -> w e. D ) ) ) |
494 |
481 482 493
|
rexlimd |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) -> ( E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) w = ( x + ( k x. T ) ) -> w e. D ) ) |
495 |
475 494
|
mpd |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) -> w e. D ) |
496 |
495
|
ralrimiva |
|- ( ch -> A. w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } w e. D ) |
497 |
|
dfss3 |
|- ( { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } C_ D <-> A. w e. { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } w e. D ) |
498 |
496 497
|
sylibr |
|- ( ch -> { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } C_ D ) |
499 |
498 163
|
sseqtrrd |
|- ( ch -> { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } C_ dom F ) |
500 |
499
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } C_ dom F ) |
501 |
157
|
adantr |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ph ) |
502 |
389
|
sselda |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> x e. D ) |
503 |
183
|
adantr |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> k e. ZZ ) |
504 |
501 502 503 10
|
syl3anc |
|- ( ( ch /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
505 |
504
|
adantlr |
|- ( ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) /\ x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
506 |
|
simpr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) |
507 |
465 466 468 469 470 500 505 506
|
limcperiod |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> w e. ( ( F |` { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) limCC ( X + ( k x. T ) ) ) ) |
508 |
258
|
eqcomd |
|- ( ch -> ( Q ` ( i + 1 ) ) = ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) ) |
509 |
236 508
|
oveq12d |
|- ( ch -> ( y (,) ( Q ` ( i + 1 ) ) ) = ( ( X + ( k x. T ) ) (,) ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) ) ) |
510 |
233 187 186
|
iooshift |
|- ( ch -> ( ( X + ( k x. T ) ) (,) ( ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) + ( k x. T ) ) ) = { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) |
511 |
509 510
|
eqtr2d |
|- ( ch -> { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } = ( y (,) ( Q ` ( i + 1 ) ) ) ) |
512 |
511
|
reseq2d |
|- ( ch -> ( F |` { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) = ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) ) |
513 |
512 237
|
oveq12d |
|- ( ch -> ( ( F |` { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) limCC ( X + ( k x. T ) ) ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
514 |
513
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> ( ( F |` { z e. CC | E. x e. ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) z = ( x + ( k x. T ) ) } ) limCC ( X + ( k x. T ) ) ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
515 |
507 514
|
eleqtrd |
|- ( ( ch /\ w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) -> w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
516 |
464
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> F : dom F --> CC ) |
517 |
|
ioosscn |
|- ( y (,) ( Q ` ( i + 1 ) ) ) C_ CC |
518 |
517
|
a1i |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
519 |
|
icogelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ y ) |
520 |
223 225 238 519
|
syl3anc |
|- ( ch -> ( Q ` i ) <_ y ) |
521 |
|
iooss1 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` i ) <_ y ) -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
522 |
223 520 521
|
syl2anc |
|- ( ch -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
523 |
522 217
|
sstrd |
|- ( ch -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ D ) |
524 |
523 163
|
sseqtrrd |
|- ( ch -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
525 |
524
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( y (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
526 |
360
|
negcld |
|- ( ch -> -u k e. CC ) |
527 |
526 195
|
mulcld |
|- ( ch -> ( -u k x. T ) e. CC ) |
528 |
527
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( -u k x. T ) e. CC ) |
529 |
|
eqid |
|- { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } = { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } |
530 |
|
eqeq1 |
|- ( z = w -> ( z = ( x + ( -u k x. T ) ) <-> w = ( x + ( -u k x. T ) ) ) ) |
531 |
530
|
rexbidv |
|- ( z = w -> ( E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) <-> E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) w = ( x + ( -u k x. T ) ) ) ) |
532 |
531
|
elrab |
|- ( w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } <-> ( w e. CC /\ E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) w = ( x + ( -u k x. T ) ) ) ) |
533 |
532
|
simprbi |
|- ( w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } -> E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) w = ( x + ( -u k x. T ) ) ) |
534 |
533
|
adantl |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) -> E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) w = ( x + ( -u k x. T ) ) ) |
535 |
|
nfre1 |
|- F/ x E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) |
536 |
535 478
|
nfrabw |
|- F/_ x { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } |
537 |
536
|
nfcri |
|- F/ x w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } |
538 |
476 537
|
nfan |
|- F/ x ( ch /\ w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) |
539 |
|
simp3 |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) /\ w = ( x + ( -u k x. T ) ) ) -> w = ( x + ( -u k x. T ) ) ) |
540 |
157
|
adantr |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
541 |
523
|
sselda |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> x e. D ) |
542 |
183
|
adantr |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> k e. ZZ ) |
543 |
542
|
znegcld |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> -u k e. ZZ ) |
544 |
540 541 543 284
|
syl3anc |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> ( x + ( -u k x. T ) ) e. D ) |
545 |
544
|
3adant3 |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) /\ w = ( x + ( -u k x. T ) ) ) -> ( x + ( -u k x. T ) ) e. D ) |
546 |
539 545
|
eqeltrd |
|- ( ( ch /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) /\ w = ( x + ( -u k x. T ) ) ) -> w e. D ) |
547 |
546
|
3exp |
|- ( ch -> ( x e. ( y (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( x + ( -u k x. T ) ) -> w e. D ) ) ) |
548 |
547
|
adantr |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) -> ( x e. ( y (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( x + ( -u k x. T ) ) -> w e. D ) ) ) |
549 |
538 482 548
|
rexlimd |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) -> ( E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) w = ( x + ( -u k x. T ) ) -> w e. D ) ) |
550 |
534 549
|
mpd |
|- ( ( ch /\ w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) -> w e. D ) |
551 |
550
|
ralrimiva |
|- ( ch -> A. w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } w e. D ) |
552 |
|
dfss3 |
|- ( { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } C_ D <-> A. w e. { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } w e. D ) |
553 |
551 552
|
sylibr |
|- ( ch -> { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } C_ D ) |
554 |
553 163
|
sseqtrrd |
|- ( ch -> { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } C_ dom F ) |
555 |
554
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } C_ dom F ) |
556 |
157
|
ad2antrr |
|- ( ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
557 |
541
|
adantlr |
|- ( ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> x e. D ) |
558 |
543
|
adantlr |
|- ( ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> -u k e. ZZ ) |
559 |
274
|
fveq2d |
|- ( j = -u k -> ( F ` ( x + ( j x. T ) ) ) = ( F ` ( x + ( -u k x. T ) ) ) ) |
560 |
559
|
eqeq1d |
|- ( j = -u k -> ( ( F ` ( x + ( j x. T ) ) ) = ( F ` x ) <-> ( F ` ( x + ( -u k x. T ) ) ) = ( F ` x ) ) ) |
561 |
272 560
|
imbi12d |
|- ( j = -u k -> ( ( ( ph /\ x e. D /\ j e. ZZ ) -> ( F ` ( x + ( j x. T ) ) ) = ( F ` x ) ) <-> ( ( ph /\ x e. D /\ -u k e. ZZ ) -> ( F ` ( x + ( -u k x. T ) ) ) = ( F ` x ) ) ) ) |
562 |
280
|
fveq2d |
|- ( k = j -> ( F ` ( x + ( k x. T ) ) ) = ( F ` ( x + ( j x. T ) ) ) ) |
563 |
562
|
eqeq1d |
|- ( k = j -> ( ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) <-> ( F ` ( x + ( j x. T ) ) ) = ( F ` x ) ) ) |
564 |
278 563
|
imbi12d |
|- ( k = j -> ( ( ( ph /\ x e. D /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) <-> ( ( ph /\ x e. D /\ j e. ZZ ) -> ( F ` ( x + ( j x. T ) ) ) = ( F ` x ) ) ) ) |
565 |
564 10
|
chvarvv |
|- ( ( ph /\ x e. D /\ j e. ZZ ) -> ( F ` ( x + ( j x. T ) ) ) = ( F ` x ) ) |
566 |
270 561 565
|
vtocl |
|- ( ( ph /\ x e. D /\ -u k e. ZZ ) -> ( F ` ( x + ( -u k x. T ) ) ) = ( F ` x ) ) |
567 |
556 557 558 566
|
syl3anc |
|- ( ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) /\ x e. ( y (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( x + ( -u k x. T ) ) ) = ( F ` x ) ) |
568 |
|
simpr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
569 |
516 518 525 528 529 555 567 568
|
limcperiod |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> w e. ( ( F |` { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) limCC ( y + ( -u k x. T ) ) ) ) |
570 |
361
|
oveq2d |
|- ( ch -> ( y + ( -u k x. T ) ) = ( y + -u ( k x. T ) ) ) |
571 |
305
|
recnd |
|- ( ch -> y e. CC ) |
572 |
571 257
|
negsubd |
|- ( ch -> ( y + -u ( k x. T ) ) = ( y - ( k x. T ) ) ) |
573 |
302
|
eqcomd |
|- ( ch -> ( y - ( k x. T ) ) = X ) |
574 |
570 572 573
|
3eqtrd |
|- ( ch -> ( y + ( -u k x. T ) ) = X ) |
575 |
574
|
eqcomd |
|- ( ch -> X = ( y + ( -u k x. T ) ) ) |
576 |
361
|
oveq2d |
|- ( ch -> ( ( Q ` ( i + 1 ) ) + ( -u k x. T ) ) = ( ( Q ` ( i + 1 ) ) + -u ( k x. T ) ) ) |
577 |
256 257
|
negsubd |
|- ( ch -> ( ( Q ` ( i + 1 ) ) + -u ( k x. T ) ) = ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) |
578 |
576 577
|
eqtr2d |
|- ( ch -> ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) = ( ( Q ` ( i + 1 ) ) + ( -u k x. T ) ) ) |
579 |
575 578
|
oveq12d |
|- ( ch -> ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) = ( ( y + ( -u k x. T ) ) (,) ( ( Q ` ( i + 1 ) ) + ( -u k x. T ) ) ) ) |
580 |
184
|
renegcld |
|- ( ch -> -u k e. RR ) |
581 |
580 185
|
remulcld |
|- ( ch -> ( -u k x. T ) e. RR ) |
582 |
305 182 581
|
iooshift |
|- ( ch -> ( ( y + ( -u k x. T ) ) (,) ( ( Q ` ( i + 1 ) ) + ( -u k x. T ) ) ) = { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) |
583 |
579 582
|
eqtr2d |
|- ( ch -> { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } = ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
584 |
583
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } = ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) |
585 |
584
|
reseq2d |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( F |` { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) = ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) ) |
586 |
574
|
adantr |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( y + ( -u k x. T ) ) = X ) |
587 |
585 586
|
oveq12d |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> ( ( F |` { z e. CC | E. x e. ( y (,) ( Q ` ( i + 1 ) ) ) z = ( x + ( -u k x. T ) ) } ) limCC ( y + ( -u k x. T ) ) ) = ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) |
588 |
569 587
|
eleqtrd |
|- ( ( ch /\ w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) -> w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) ) |
589 |
515 588
|
impbida |
|- ( ch -> ( w e. ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) <-> w e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) ) |
590 |
589
|
eqrdv |
|- ( ch -> ( ( F |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
591 |
459 590
|
eqtrd |
|- ( ch -> ( ( ( F |` ( ( X (,) +oo ) i^i D ) ) |` ( X (,) ( ( Q ` ( i + 1 ) ) - ( k x. T ) ) ) ) limCC X ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
592 |
167 457 591
|
3eqtr2d |
|- ( ch -> ( ( F |` ( X (,) +oo ) ) limCC X ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
593 |
157 177 78
|
syl2anc |
|- ( ch -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
594 |
157 177 11
|
syl2anc |
|- ( ch -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
595 |
157 177 12
|
syl2anc |
|- ( ch -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
596 |
|
eqid |
|- if ( y = ( Q ` i ) , R , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` y ) ) = if ( y = ( Q ` i ) , R , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` y ) ) |
597 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) = ( ( TopOpen ` CCfld ) |`t ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
598 |
222 182 593 594 595 305 182 307 522 596 597
|
fourierdlem32 |
|- ( ch -> if ( y = ( Q ` i ) , R , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` y ) ) e. ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
599 |
522
|
resabs1d |
|- ( ch -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( y (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) ) |
600 |
599
|
oveq1d |
|- ( ch -> ( ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) = ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
601 |
598 600
|
eleqtrd |
|- ( ch -> if ( y = ( Q ` i ) , R , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` y ) ) e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) ) |
602 |
|
ne0i |
|- ( if ( y = ( Q ` i ) , R , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` y ) ) e. ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) -> ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) =/= (/) ) |
603 |
601 602
|
syl |
|- ( ch -> ( ( F |` ( y (,) ( Q ` ( i + 1 ) ) ) ) limCC y ) =/= (/) ) |
604 |
592 603
|
eqnetrd |
|- ( ch -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
605 |
16 604
|
sylbir |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) /\ k e. ZZ ) /\ y = ( X + ( k x. T ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
606 |
152 153 154 605
|
syl21anc |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ k e. ZZ ) /\ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
607 |
606
|
3exp |
|- ( ph -> ( ( i e. ( 0 ..^ M ) /\ k e. ZZ ) -> ( ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) ) |
608 |
607
|
adantr |
|- ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( i e. ( 0 ..^ M ) /\ k e. ZZ ) -> ( ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) ) |
609 |
143 148 608
|
rexlim2d |
|- ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) |
610 |
140 609
|
mpd |
|- ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
611 |
133 139 610
|
vtocl |
|- ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( ( E ` X ) - T ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( ( E ` X ) - T ) = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
612 |
17 132 611
|
syl2anc |
|- ( ( ph /\ ( E ` X ) = B ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
613 |
|
iocssre |
|- ( ( A e. RR* /\ B e. RR ) -> ( A (,] B ) C_ RR ) |
614 |
63 2 613
|
syl2anc |
|- ( ph -> ( A (,] B ) C_ RR ) |
615 |
|
ovex |
|- ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. _V |
616 |
14
|
fvmpt2 |
|- ( ( x e. RR /\ ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. _V ) -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
617 |
615 616
|
mpan2 |
|- ( x e. RR -> ( Z ` x ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
618 |
617
|
oveq2d |
|- ( x e. RR -> ( x + ( Z ` x ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
619 |
618
|
mpteq2ia |
|- ( x e. RR |-> ( x + ( Z ` x ) ) ) = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
620 |
15 619
|
eqtri |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
621 |
1 2 3 5 620
|
fourierdlem4 |
|- ( ph -> E : RR --> ( A (,] B ) ) |
622 |
621 13
|
ffvelcdmd |
|- ( ph -> ( E ` X ) e. ( A (,] B ) ) |
623 |
614 622
|
sseldd |
|- ( ph -> ( E ` X ) e. RR ) |
624 |
623
|
adantr |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( E ` X ) e. RR ) |
625 |
|
simpl |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ph ) |
626 |
|
simpr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( E ` X ) e. ran Q ) |
627 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
628 |
48 627
|
syl |
|- ( ph -> Q Fn ( 0 ... M ) ) |
629 |
628
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> Q Fn ( 0 ... M ) ) |
630 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
631 |
629 630
|
syl |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( ( E ` X ) e. ran Q <-> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) ) |
632 |
626 631
|
mpbid |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) ) |
633 |
|
1zzd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 e. ZZ ) |
634 |
|
elfzelz |
|- ( j e. ( 0 ... M ) -> j e. ZZ ) |
635 |
634
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ZZ ) |
636 |
635
|
zred |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. RR ) |
637 |
|
elfzle1 |
|- ( j e. ( 0 ... M ) -> 0 <_ j ) |
638 |
637
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 <_ j ) |
639 |
|
id |
|- ( ( Q ` j ) = ( E ` X ) -> ( Q ` j ) = ( E ` X ) ) |
640 |
639
|
eqcomd |
|- ( ( Q ` j ) = ( E ` X ) -> ( E ` X ) = ( Q ` j ) ) |
641 |
640
|
ad2antlr |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = ( Q ` j ) ) |
642 |
|
fveq2 |
|- ( j = 0 -> ( Q ` j ) = ( Q ` 0 ) ) |
643 |
642
|
adantl |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( Q ` j ) = ( Q ` 0 ) ) |
644 |
45
|
simprld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
645 |
644
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
646 |
645
|
ad2antrr |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( Q ` 0 ) = A ) |
647 |
641 643 646
|
3eqtrd |
|- ( ( ( ph /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
648 |
647
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
649 |
648
|
adantllr |
|- ( ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> ( E ` X ) = A ) |
650 |
1
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A e. RR ) |
651 |
63
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A e. RR* ) |
652 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
653 |
652
|
adantr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> B e. RR* ) |
654 |
|
simpr |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. ( A (,] B ) ) |
655 |
|
iocgtlb |
|- ( ( A e. RR* /\ B e. RR* /\ ( E ` X ) e. ( A (,] B ) ) -> A < ( E ` X ) ) |
656 |
651 653 654 655
|
syl3anc |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> A < ( E ` X ) ) |
657 |
650 656
|
gtned |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) =/= A ) |
658 |
657
|
neneqd |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> -. ( E ` X ) = A ) |
659 |
658
|
ad3antrrr |
|- ( ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) /\ j = 0 ) -> -. ( E ` X ) = A ) |
660 |
649 659
|
pm2.65da |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> -. j = 0 ) |
661 |
660
|
neqned |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j =/= 0 ) |
662 |
636 638 661
|
ne0gt0d |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 < j ) |
663 |
|
0zd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 e. ZZ ) |
664 |
|
zltp1le |
|- ( ( 0 e. ZZ /\ j e. ZZ ) -> ( 0 < j <-> ( 0 + 1 ) <_ j ) ) |
665 |
663 635 664
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( 0 < j <-> ( 0 + 1 ) <_ j ) ) |
666 |
662 665
|
mpbid |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( 0 + 1 ) <_ j ) |
667 |
82 666
|
eqbrtrid |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 1 <_ j ) |
668 |
|
eluz2 |
|- ( j e. ( ZZ>= ` 1 ) <-> ( 1 e. ZZ /\ j e. ZZ /\ 1 <_ j ) ) |
669 |
633 635 667 668
|
syl3anbrc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. ( ZZ>= ` 1 ) ) |
670 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
671 |
669 670
|
eleqtrrdi |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> j e. NN ) |
672 |
|
nnm1nn0 |
|- ( j e. NN -> ( j - 1 ) e. NN0 ) |
673 |
671 672
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. NN0 ) |
674 |
673 50
|
eleqtrdi |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( ZZ>= ` 0 ) ) |
675 |
19
|
ad3antrrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> M e. ZZ ) |
676 |
|
peano2zm |
|- ( j e. ZZ -> ( j - 1 ) e. ZZ ) |
677 |
634 676
|
syl |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. ZZ ) |
678 |
677
|
zred |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) e. RR ) |
679 |
634
|
zred |
|- ( j e. ( 0 ... M ) -> j e. RR ) |
680 |
|
elfzel2 |
|- ( j e. ( 0 ... M ) -> M e. ZZ ) |
681 |
680
|
zred |
|- ( j e. ( 0 ... M ) -> M e. RR ) |
682 |
679
|
ltm1d |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < j ) |
683 |
|
elfzle2 |
|- ( j e. ( 0 ... M ) -> j <_ M ) |
684 |
678 679 681 682 683
|
ltletrd |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) < M ) |
685 |
684
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) < M ) |
686 |
|
elfzo2 |
|- ( ( j - 1 ) e. ( 0 ..^ M ) <-> ( ( j - 1 ) e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ ( j - 1 ) < M ) ) |
687 |
674 675 685 686
|
syl3anbrc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ..^ M ) ) |
688 |
48
|
ad3antrrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> Q : ( 0 ... M ) --> RR ) |
689 |
635 676
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ZZ ) |
690 |
673
|
nn0ge0d |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> 0 <_ ( j - 1 ) ) |
691 |
678 681 684
|
ltled |
|- ( j e. ( 0 ... M ) -> ( j - 1 ) <_ M ) |
692 |
691
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) <_ M ) |
693 |
663 675 689 690 692
|
elfzd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( j - 1 ) e. ( 0 ... M ) ) |
694 |
688 693
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR ) |
695 |
694
|
rexrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) e. RR* ) |
696 |
48
|
ffvelcdmda |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR ) |
697 |
696
|
rexrd |
|- ( ( ph /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
698 |
697
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) -> ( Q ` j ) e. RR* ) |
699 |
698
|
adantr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) e. RR* ) |
700 |
614
|
sselda |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. RR ) |
701 |
700
|
rexrd |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. RR* ) |
702 |
701
|
ad2antrr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. RR* ) |
703 |
|
simplll |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ph ) |
704 |
|
ovex |
|- ( j - 1 ) e. _V |
705 |
|
eleq1 |
|- ( i = ( j - 1 ) -> ( i e. ( 0 ..^ M ) <-> ( j - 1 ) e. ( 0 ..^ M ) ) ) |
706 |
705
|
anbi2d |
|- ( i = ( j - 1 ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) ) ) |
707 |
|
fveq2 |
|- ( i = ( j - 1 ) -> ( Q ` i ) = ( Q ` ( j - 1 ) ) ) |
708 |
|
oveq1 |
|- ( i = ( j - 1 ) -> ( i + 1 ) = ( ( j - 1 ) + 1 ) ) |
709 |
708
|
fveq2d |
|- ( i = ( j - 1 ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
710 |
707 709
|
breq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
711 |
706 710
|
imbi12d |
|- ( i = ( j - 1 ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
712 |
704 711 78
|
vtocl |
|- ( ( ph /\ ( j - 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
713 |
703 687 712
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` ( ( j - 1 ) + 1 ) ) ) |
714 |
634
|
zcnd |
|- ( j e. ( 0 ... M ) -> j e. CC ) |
715 |
|
1cnd |
|- ( j e. ( 0 ... M ) -> 1 e. CC ) |
716 |
714 715
|
npcand |
|- ( j e. ( 0 ... M ) -> ( ( j - 1 ) + 1 ) = j ) |
717 |
716
|
eqcomd |
|- ( j e. ( 0 ... M ) -> j = ( ( j - 1 ) + 1 ) ) |
718 |
717
|
fveq2d |
|- ( j e. ( 0 ... M ) -> ( Q ` j ) = ( Q ` ( ( j - 1 ) + 1 ) ) ) |
719 |
718
|
eqcomd |
|- ( j e. ( 0 ... M ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
720 |
719
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( ( j - 1 ) + 1 ) ) = ( Q ` j ) ) |
721 |
713 720
|
breqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( Q ` j ) ) |
722 |
|
simpr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` j ) = ( E ` X ) ) |
723 |
721 722
|
breqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( Q ` ( j - 1 ) ) < ( E ` X ) ) |
724 |
623
|
leidd |
|- ( ph -> ( E ` X ) <_ ( E ` X ) ) |
725 |
724
|
ad2antrr |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( E ` X ) ) |
726 |
640
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) = ( Q ` j ) ) |
727 |
725 726
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
728 |
727
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) <_ ( Q ` j ) ) |
729 |
695 699 702 723 728
|
eliocd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) ) |
730 |
718
|
oveq2d |
|- ( j e. ( 0 ... M ) -> ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
731 |
730
|
ad2antlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( ( Q ` ( j - 1 ) ) (,] ( Q ` j ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
732 |
729 731
|
eleqtrd |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
733 |
707 709
|
oveq12d |
|- ( i = ( j - 1 ) -> ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) |
734 |
733
|
eleq2d |
|- ( i = ( j - 1 ) -> ( ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) ) |
735 |
734
|
rspcev |
|- ( ( ( j - 1 ) e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` ( j - 1 ) ) (,] ( Q ` ( ( j - 1 ) + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
736 |
687 732 735
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) /\ ( Q ` j ) = ( E ` X ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
737 |
736
|
ex |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
738 |
737
|
adantlr |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) /\ j e. ( 0 ... M ) ) -> ( ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
739 |
738
|
rexlimdva |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> ( E. j e. ( 0 ... M ) ( Q ` j ) = ( E ` X ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
740 |
632 739
|
mpd |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
741 |
6
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> M e. NN ) |
742 |
48
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> Q : ( 0 ... M ) --> RR ) |
743 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
744 |
645
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
745 |
644
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
746 |
745
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
747 |
744 746
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
748 |
743 747
|
sseqtrid |
|- ( ph -> ( A (,] B ) C_ ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
749 |
748
|
sselda |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
750 |
749
|
adantr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> ( E ` X ) e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
751 |
|
simpr |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> -. ( E ` X ) e. ran Q ) |
752 |
|
fveq2 |
|- ( k = j -> ( Q ` k ) = ( Q ` j ) ) |
753 |
752
|
breq1d |
|- ( k = j -> ( ( Q ` k ) < ( E ` X ) <-> ( Q ` j ) < ( E ` X ) ) ) |
754 |
753
|
cbvrabv |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } = { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } |
755 |
754
|
supeq1i |
|- sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) < ( E ` X ) } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) < ( E ` X ) } , RR , < ) |
756 |
741 742 750 751 755
|
fourierdlem25 |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
757 |
|
ioossioc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) |
758 |
757
|
sseli |
|- ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
759 |
758
|
a1i |
|- ( ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) /\ i e. ( 0 ..^ M ) ) -> ( ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
760 |
759
|
reximdva |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) ) |
761 |
756 760
|
mpd |
|- ( ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) /\ -. ( E ` X ) e. ran Q ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
762 |
740 761
|
pm2.61dan |
|- ( ( ph /\ ( E ` X ) e. ( A (,] B ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
763 |
622 762
|
mpdan |
|- ( ph -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) ) |
764 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
765 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
766 |
765
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
767 |
764 766
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) |
768 |
767
|
eleq2d |
|- ( i = j -> ( ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) ) |
769 |
768
|
cbvrexvw |
|- ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) (,] ( Q ` ( i + 1 ) ) ) <-> E. j e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) |
770 |
763 769
|
sylib |
|- ( ph -> E. j e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) |
771 |
770
|
adantr |
|- ( ( ph /\ ( E ` X ) =/= B ) -> E. j e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) |
772 |
|
elfzonn0 |
|- ( j e. ( 0 ..^ M ) -> j e. NN0 ) |
773 |
|
1nn0 |
|- 1 e. NN0 |
774 |
773
|
a1i |
|- ( j e. ( 0 ..^ M ) -> 1 e. NN0 ) |
775 |
772 774
|
nn0addcld |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. NN0 ) |
776 |
775 50
|
eleqtrdi |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( ZZ>= ` 0 ) ) |
777 |
776
|
adantr |
|- ( ( j e. ( 0 ..^ M ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) e. ( ZZ>= ` 0 ) ) |
778 |
777
|
3ad2antl2 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) e. ( ZZ>= ` 0 ) ) |
779 |
19
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> M e. ZZ ) |
780 |
779
|
3ad2antl1 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> M e. ZZ ) |
781 |
772
|
nn0red |
|- ( j e. ( 0 ..^ M ) -> j e. RR ) |
782 |
781
|
adantr |
|- ( ( j e. ( 0 ..^ M ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> j e. RR ) |
783 |
782
|
3ad2antl2 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> j e. RR ) |
784 |
|
1red |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> 1 e. RR ) |
785 |
783 784
|
readdcld |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) e. RR ) |
786 |
780
|
zred |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> M e. RR ) |
787 |
|
elfzop1le2 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) <_ M ) |
788 |
787
|
adantr |
|- ( ( j e. ( 0 ..^ M ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) <_ M ) |
789 |
788
|
3ad2antl2 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) <_ M ) |
790 |
|
simplr |
|- ( ( ( ph /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( E ` X ) = ( Q ` ( j + 1 ) ) ) |
791 |
|
fveq2 |
|- ( M = ( j + 1 ) -> ( Q ` M ) = ( Q ` ( j + 1 ) ) ) |
792 |
791
|
eqcomd |
|- ( M = ( j + 1 ) -> ( Q ` ( j + 1 ) ) = ( Q ` M ) ) |
793 |
792
|
adantl |
|- ( ( ( ph /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( Q ` ( j + 1 ) ) = ( Q ` M ) ) |
794 |
745
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( Q ` M ) = B ) |
795 |
790 793 794
|
3eqtrd |
|- ( ( ( ph /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( E ` X ) = B ) |
796 |
795
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( E ` X ) = B ) |
797 |
|
simpllr |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> ( E ` X ) =/= B ) |
798 |
797
|
neneqd |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) /\ M = ( j + 1 ) ) -> -. ( E ` X ) = B ) |
799 |
796 798
|
pm2.65da |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> -. M = ( j + 1 ) ) |
800 |
799
|
neqned |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> M =/= ( j + 1 ) ) |
801 |
800
|
3ad2antl1 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> M =/= ( j + 1 ) ) |
802 |
785 786 789 801
|
leneltd |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) < M ) |
803 |
|
elfzo2 |
|- ( ( j + 1 ) e. ( 0 ..^ M ) <-> ( ( j + 1 ) e. ( ZZ>= ` 0 ) /\ M e. ZZ /\ ( j + 1 ) < M ) ) |
804 |
778 780 802 803
|
syl3anbrc |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( j + 1 ) e. ( 0 ..^ M ) ) |
805 |
48
|
adantr |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
806 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ M ) -> ( j + 1 ) e. ( 0 ... M ) ) |
807 |
806
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( j + 1 ) e. ( 0 ... M ) ) |
808 |
805 807
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
809 |
808
|
rexrd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
810 |
809
|
adantlr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
811 |
810
|
3adant3 |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
812 |
811
|
adantr |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
813 |
|
simpl1l |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ph ) |
814 |
813 48
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> Q : ( 0 ... M ) --> RR ) |
815 |
|
fzofzp1 |
|- ( ( j + 1 ) e. ( 0 ..^ M ) -> ( ( j + 1 ) + 1 ) e. ( 0 ... M ) ) |
816 |
804 815
|
syl |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( ( j + 1 ) + 1 ) e. ( 0 ... M ) ) |
817 |
814 816
|
ffvelcdmd |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( ( j + 1 ) + 1 ) ) e. RR ) |
818 |
817
|
rexrd |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( ( j + 1 ) + 1 ) ) e. RR* ) |
819 |
623
|
rexrd |
|- ( ph -> ( E ` X ) e. RR* ) |
820 |
819
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. RR* ) |
821 |
820
|
3ad2antl1 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. RR* ) |
822 |
808
|
leidd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) <_ ( Q ` ( j + 1 ) ) ) |
823 |
822
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) <_ ( Q ` ( j + 1 ) ) ) |
824 |
|
id |
|- ( ( E ` X ) = ( Q ` ( j + 1 ) ) -> ( E ` X ) = ( Q ` ( j + 1 ) ) ) |
825 |
824
|
eqcomd |
|- ( ( E ` X ) = ( Q ` ( j + 1 ) ) -> ( Q ` ( j + 1 ) ) = ( E ` X ) ) |
826 |
825
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) = ( E ` X ) ) |
827 |
823 826
|
breqtrd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) <_ ( E ` X ) ) |
828 |
827
|
adantllr |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) <_ ( E ` X ) ) |
829 |
828
|
3adantl3 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) <_ ( E ` X ) ) |
830 |
|
simpr |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) = ( Q ` ( j + 1 ) ) ) |
831 |
|
simpr |
|- ( ( ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) = ( Q ` ( j + 1 ) ) ) |
832 |
|
ovex |
|- ( j + 1 ) e. _V |
833 |
|
eleq1 |
|- ( i = ( j + 1 ) -> ( i e. ( 0 ..^ M ) <-> ( j + 1 ) e. ( 0 ..^ M ) ) ) |
834 |
833
|
anbi2d |
|- ( i = ( j + 1 ) -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) ) ) |
835 |
|
fveq2 |
|- ( i = ( j + 1 ) -> ( Q ` i ) = ( Q ` ( j + 1 ) ) ) |
836 |
|
oveq1 |
|- ( i = ( j + 1 ) -> ( i + 1 ) = ( ( j + 1 ) + 1 ) ) |
837 |
836
|
fveq2d |
|- ( i = ( j + 1 ) -> ( Q ` ( i + 1 ) ) = ( Q ` ( ( j + 1 ) + 1 ) ) ) |
838 |
835 837
|
breq12d |
|- ( i = ( j + 1 ) -> ( ( Q ` i ) < ( Q ` ( i + 1 ) ) <-> ( Q ` ( j + 1 ) ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) ) |
839 |
834 838
|
imbi12d |
|- ( i = ( j + 1 ) -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) <-> ( ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) ) ) |
840 |
832 839 78
|
vtocl |
|- ( ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) -> ( Q ` ( j + 1 ) ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) |
841 |
840
|
adantr |
|- ( ( ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) |
842 |
831 841
|
eqbrtrd |
|- ( ( ( ph /\ ( j + 1 ) e. ( 0 ..^ M ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) |
843 |
813 804 830 842
|
syl21anc |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) < ( Q ` ( ( j + 1 ) + 1 ) ) ) |
844 |
812 818 821 829 843
|
elicod |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` ( j + 1 ) ) [,) ( Q ` ( ( j + 1 ) + 1 ) ) ) ) |
845 |
835 837
|
oveq12d |
|- ( i = ( j + 1 ) -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` ( j + 1 ) ) [,) ( Q ` ( ( j + 1 ) + 1 ) ) ) ) |
846 |
845
|
eleq2d |
|- ( i = ( j + 1 ) -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` ( j + 1 ) ) [,) ( Q ` ( ( j + 1 ) + 1 ) ) ) ) ) |
847 |
846
|
rspcev |
|- ( ( ( j + 1 ) e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` ( j + 1 ) ) [,) ( Q ` ( ( j + 1 ) + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
848 |
804 844 847
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
849 |
|
simpl2 |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> j e. ( 0 ..^ M ) ) |
850 |
|
id |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) ) |
851 |
850
|
3adant1r |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) ) |
852 |
|
elfzofz |
|- ( j e. ( 0 ..^ M ) -> j e. ( 0 ... M ) ) |
853 |
852
|
adantl |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ... M ) ) |
854 |
805 853
|
ffvelcdmd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) e. RR ) |
855 |
854
|
rexrd |
|- ( ( ph /\ j e. ( 0 ..^ M ) ) -> ( Q ` j ) e. RR* ) |
856 |
855
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` j ) e. RR* ) |
857 |
856
|
3adantl3 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` j ) e. RR* ) |
858 |
809
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
859 |
858
|
3adantl3 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
860 |
819
|
adantr |
|- ( ( ph /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. RR* ) |
861 |
860
|
3ad2antl1 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. RR* ) |
862 |
854
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` j ) e. RR ) |
863 |
623
|
3ad2ant1 |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( E ` X ) e. RR ) |
864 |
855
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` j ) e. RR* ) |
865 |
809
|
3adant3 |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` ( j + 1 ) ) e. RR* ) |
866 |
|
simp3 |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) |
867 |
|
iocgtlb |
|- ( ( ( Q ` j ) e. RR* /\ ( Q ` ( j + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` j ) < ( E ` X ) ) |
868 |
864 865 866 867
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` j ) < ( E ` X ) ) |
869 |
862 863 868
|
ltled |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( Q ` j ) <_ ( E ` X ) ) |
870 |
869
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` j ) <_ ( E ` X ) ) |
871 |
863
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. RR ) |
872 |
808
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
873 |
872
|
3adantl3 |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) e. RR ) |
874 |
|
iocleub |
|- ( ( ( Q ` j ) e. RR* /\ ( Q ` ( j + 1 ) ) e. RR* /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( j + 1 ) ) ) |
875 |
864 865 866 874
|
syl3anc |
|- ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> ( E ` X ) <_ ( Q ` ( j + 1 ) ) ) |
876 |
875
|
adantr |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) <_ ( Q ` ( j + 1 ) ) ) |
877 |
|
neqne |
|- ( -. ( E ` X ) = ( Q ` ( j + 1 ) ) -> ( E ` X ) =/= ( Q ` ( j + 1 ) ) ) |
878 |
877
|
necomd |
|- ( -. ( E ` X ) = ( Q ` ( j + 1 ) ) -> ( Q ` ( j + 1 ) ) =/= ( E ` X ) ) |
879 |
878
|
adantl |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( Q ` ( j + 1 ) ) =/= ( E ` X ) ) |
880 |
871 873 876 879
|
leneltd |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) < ( Q ` ( j + 1 ) ) ) |
881 |
857 859 861 870 880
|
elicod |
|- ( ( ( ph /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) |
882 |
851 881
|
sylan |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) |
883 |
764 766
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) |
884 |
883
|
eleq2d |
|- ( i = j -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) ) |
885 |
884
|
rspcev |
|- ( ( j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) [,) ( Q ` ( j + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
886 |
849 882 885
|
syl2anc |
|- ( ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) /\ -. ( E ` X ) = ( Q ` ( j + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
887 |
848 886
|
pm2.61dan |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ j e. ( 0 ..^ M ) /\ ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
888 |
887
|
rexlimdv3a |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( E. j e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` j ) (,] ( Q ` ( j + 1 ) ) ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
889 |
771 888
|
mpd |
|- ( ( ph /\ ( E ` X ) =/= B ) -> E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
890 |
|
simpr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
891 |
|
oveq1 |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( k x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
892 |
891
|
oveq2d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( X + ( k x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
893 |
892
|
eqeq2d |
|- ( k = ( |_ ` ( ( B - X ) / T ) ) -> ( ( E ` X ) = ( X + ( k x. T ) ) <-> ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) ) |
894 |
893
|
rspcev |
|- ( ( ( |_ ` ( ( B - X ) / T ) ) e. ZZ /\ ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) -> E. k e. ZZ ( E ` X ) = ( X + ( k x. T ) ) ) |
895 |
102 110 894
|
syl2anc |
|- ( ph -> E. k e. ZZ ( E ` X ) = ( X + ( k x. T ) ) ) |
896 |
895
|
ad2antrr |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> E. k e. ZZ ( E ` X ) = ( X + ( k x. T ) ) ) |
897 |
|
r19.42v |
|- ( E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) <-> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ E. k e. ZZ ( E ` X ) = ( X + ( k x. T ) ) ) ) |
898 |
890 896 897
|
sylanbrc |
|- ( ( ( ph /\ ( E ` X ) =/= B ) /\ ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) -> E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) |
899 |
898
|
ex |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) -> E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) |
900 |
899
|
reximdv |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( E. i e. ( 0 ..^ M ) ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) -> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) |
901 |
889 900
|
mpd |
|- ( ( ph /\ ( E ` X ) =/= B ) -> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) |
902 |
625 901
|
jca |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) |
903 |
|
eleq1 |
|- ( y = ( E ` X ) -> ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) <-> ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) ) |
904 |
|
eqeq1 |
|- ( y = ( E ` X ) -> ( y = ( X + ( k x. T ) ) <-> ( E ` X ) = ( X + ( k x. T ) ) ) ) |
905 |
903 904
|
anbi12d |
|- ( y = ( E ` X ) -> ( ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) <-> ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) |
906 |
905
|
2rexbidv |
|- ( y = ( E ` X ) -> ( E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) <-> E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) |
907 |
906
|
anbi2d |
|- ( y = ( E ` X ) -> ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) <-> ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) ) ) |
908 |
907
|
imbi1d |
|- ( y = ( E ` X ) -> ( ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( y e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ y = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) <-> ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) ) |
909 |
908 610
|
vtoclg |
|- ( ( E ` X ) e. RR -> ( ( ph /\ E. i e. ( 0 ..^ M ) E. k e. ZZ ( ( E ` X ) e. ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) /\ ( E ` X ) = ( X + ( k x. T ) ) ) ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) ) |
910 |
624 902 909
|
sylc |
|- ( ( ph /\ ( E ` X ) =/= B ) -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |
911 |
612 910
|
pm2.61dane |
|- ( ph -> ( ( F |` ( X (,) +oo ) ) limCC X ) =/= (/) ) |