Metamath Proof Explorer


Theorem fourierdlem53

Description: The limit of F ( s ) at ( X + D ) is the limit of F ( X + s ) at D . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem53.1
|- ( ph -> F : RR --> RR )
fourierdlem53.2
|- ( ph -> X e. RR )
fourierdlem53.3
|- ( ph -> A C_ RR )
fourierdlem53.g
|- G = ( s e. A |-> ( F ` ( X + s ) ) )
fourierdlem53.xps
|- ( ( ph /\ s e. A ) -> ( X + s ) e. B )
fourierdlem53.b
|- ( ph -> B C_ RR )
fourierdlem53.sned
|- ( ( ph /\ s e. A ) -> s =/= D )
fourierdlem53.c
|- ( ph -> C e. ( ( F |` B ) limCC ( X + D ) ) )
fourierdlem53.d
|- ( ph -> D e. CC )
Assertion fourierdlem53
|- ( ph -> C e. ( G limCC D ) )

Proof

Step Hyp Ref Expression
1 fourierdlem53.1
 |-  ( ph -> F : RR --> RR )
2 fourierdlem53.2
 |-  ( ph -> X e. RR )
3 fourierdlem53.3
 |-  ( ph -> A C_ RR )
4 fourierdlem53.g
 |-  G = ( s e. A |-> ( F ` ( X + s ) ) )
5 fourierdlem53.xps
 |-  ( ( ph /\ s e. A ) -> ( X + s ) e. B )
6 fourierdlem53.b
 |-  ( ph -> B C_ RR )
7 fourierdlem53.sned
 |-  ( ( ph /\ s e. A ) -> s =/= D )
8 fourierdlem53.c
 |-  ( ph -> C e. ( ( F |` B ) limCC ( X + D ) ) )
9 fourierdlem53.d
 |-  ( ph -> D e. CC )
10 1 6 fssresd
 |-  ( ph -> ( F |` B ) : B --> RR )
11 10 fdmd
 |-  ( ph -> dom ( F |` B ) = B )
12 11 eqcomd
 |-  ( ph -> B = dom ( F |` B ) )
13 12 adantr
 |-  ( ( ph /\ s e. A ) -> B = dom ( F |` B ) )
14 5 13 eleqtrd
 |-  ( ( ph /\ s e. A ) -> ( X + s ) e. dom ( F |` B ) )
15 2 recnd
 |-  ( ph -> X e. CC )
16 15 adantr
 |-  ( ( ph /\ s e. A ) -> X e. CC )
17 3 sselda
 |-  ( ( ph /\ s e. A ) -> s e. RR )
18 17 recnd
 |-  ( ( ph /\ s e. A ) -> s e. CC )
19 9 adantr
 |-  ( ( ph /\ s e. A ) -> D e. CC )
20 16 18 19 7 addneintrd
 |-  ( ( ph /\ s e. A ) -> ( X + s ) =/= ( X + D ) )
21 20 neneqd
 |-  ( ( ph /\ s e. A ) -> -. ( X + s ) = ( X + D ) )
22 2 adantr
 |-  ( ( ph /\ s e. A ) -> X e. RR )
23 22 17 readdcld
 |-  ( ( ph /\ s e. A ) -> ( X + s ) e. RR )
24 elsng
 |-  ( ( X + s ) e. RR -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) )
25 23 24 syl
 |-  ( ( ph /\ s e. A ) -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) )
26 21 25 mtbird
 |-  ( ( ph /\ s e. A ) -> -. ( X + s ) e. { ( X + D ) } )
27 14 26 eldifd
 |-  ( ( ph /\ s e. A ) -> ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) )
28 27 ralrimiva
 |-  ( ph -> A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) )
29 eqid
 |-  ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) )
30 29 rnmptss
 |-  ( A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) )
31 28 30 syl
 |-  ( ph -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) )
32 eqid
 |-  ( s e. A |-> X ) = ( s e. A |-> X )
33 eqid
 |-  ( s e. A |-> s ) = ( s e. A |-> s )
34 ax-resscn
 |-  RR C_ CC
35 3 34 sstrdi
 |-  ( ph -> A C_ CC )
36 32 35 15 9 constlimc
 |-  ( ph -> X e. ( ( s e. A |-> X ) limCC D ) )
37 35 33 9 idlimc
 |-  ( ph -> D e. ( ( s e. A |-> s ) limCC D ) )
38 32 33 29 16 18 36 37 addlimc
 |-  ( ph -> ( X + D ) e. ( ( s e. A |-> ( X + s ) ) limCC D ) )
39 31 38 8 limccog
 |-  ( ph -> C e. ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) )
40 nfv
 |-  F/ s ph
41 40 29 5 rnmptssd
 |-  ( ph -> ran ( s e. A |-> ( X + s ) ) C_ B )
42 cores
 |-  ( ran ( s e. A |-> ( X + s ) ) C_ B -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) )
43 41 42 syl
 |-  ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) )
44 23 29 fmptd
 |-  ( ph -> ( s e. A |-> ( X + s ) ) : A --> RR )
45 fcompt
 |-  ( ( F : RR --> RR /\ ( s e. A |-> ( X + s ) ) : A --> RR ) -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) )
46 1 44 45 syl2anc
 |-  ( ph -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) )
47 4 a1i
 |-  ( ph -> G = ( s e. A |-> ( F ` ( X + s ) ) ) )
48 oveq2
 |-  ( s = x -> ( X + s ) = ( X + x ) )
49 48 fveq2d
 |-  ( s = x -> ( F ` ( X + s ) ) = ( F ` ( X + x ) ) )
50 49 cbvmptv
 |-  ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) )
51 50 a1i
 |-  ( ph -> ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) ) )
52 eqidd
 |-  ( ( ph /\ x e. A ) -> ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) ) )
53 48 adantl
 |-  ( ( ( ph /\ x e. A ) /\ s = x ) -> ( X + s ) = ( X + x ) )
54 simpr
 |-  ( ( ph /\ x e. A ) -> x e. A )
55 2 adantr
 |-  ( ( ph /\ x e. A ) -> X e. RR )
56 3 sselda
 |-  ( ( ph /\ x e. A ) -> x e. RR )
57 55 56 readdcld
 |-  ( ( ph /\ x e. A ) -> ( X + x ) e. RR )
58 52 53 54 57 fvmptd
 |-  ( ( ph /\ x e. A ) -> ( ( s e. A |-> ( X + s ) ) ` x ) = ( X + x ) )
59 58 eqcomd
 |-  ( ( ph /\ x e. A ) -> ( X + x ) = ( ( s e. A |-> ( X + s ) ) ` x ) )
60 59 fveq2d
 |-  ( ( ph /\ x e. A ) -> ( F ` ( X + x ) ) = ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) )
61 60 mpteq2dva
 |-  ( ph -> ( x e. A |-> ( F ` ( X + x ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) )
62 47 51 61 3eqtrrd
 |-  ( ph -> ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) = G )
63 43 46 62 3eqtrd
 |-  ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = G )
64 63 oveq1d
 |-  ( ph -> ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) = ( G limCC D ) )
65 39 64 eleqtrd
 |-  ( ph -> C e. ( G limCC D ) )