Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem53.1 |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem53.2 |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem53.3 |
|- ( ph -> A C_ RR ) |
4 |
|
fourierdlem53.g |
|- G = ( s e. A |-> ( F ` ( X + s ) ) ) |
5 |
|
fourierdlem53.xps |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. B ) |
6 |
|
fourierdlem53.b |
|- ( ph -> B C_ RR ) |
7 |
|
fourierdlem53.sned |
|- ( ( ph /\ s e. A ) -> s =/= D ) |
8 |
|
fourierdlem53.c |
|- ( ph -> C e. ( ( F |` B ) limCC ( X + D ) ) ) |
9 |
|
fourierdlem53.d |
|- ( ph -> D e. CC ) |
10 |
1 6
|
fssresd |
|- ( ph -> ( F |` B ) : B --> RR ) |
11 |
10
|
fdmd |
|- ( ph -> dom ( F |` B ) = B ) |
12 |
11
|
eqcomd |
|- ( ph -> B = dom ( F |` B ) ) |
13 |
12
|
adantr |
|- ( ( ph /\ s e. A ) -> B = dom ( F |` B ) ) |
14 |
5 13
|
eleqtrd |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. dom ( F |` B ) ) |
15 |
2
|
recnd |
|- ( ph -> X e. CC ) |
16 |
15
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. CC ) |
17 |
3
|
sselda |
|- ( ( ph /\ s e. A ) -> s e. RR ) |
18 |
17
|
recnd |
|- ( ( ph /\ s e. A ) -> s e. CC ) |
19 |
9
|
adantr |
|- ( ( ph /\ s e. A ) -> D e. CC ) |
20 |
16 18 19 7
|
addneintrd |
|- ( ( ph /\ s e. A ) -> ( X + s ) =/= ( X + D ) ) |
21 |
20
|
neneqd |
|- ( ( ph /\ s e. A ) -> -. ( X + s ) = ( X + D ) ) |
22 |
2
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. RR ) |
23 |
22 17
|
readdcld |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. RR ) |
24 |
|
elsng |
|- ( ( X + s ) e. RR -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) ) |
25 |
23 24
|
syl |
|- ( ( ph /\ s e. A ) -> ( ( X + s ) e. { ( X + D ) } <-> ( X + s ) = ( X + D ) ) ) |
26 |
21 25
|
mtbird |
|- ( ( ph /\ s e. A ) -> -. ( X + s ) e. { ( X + D ) } ) |
27 |
14 26
|
eldifd |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) ) |
28 |
27
|
ralrimiva |
|- ( ph -> A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) ) |
29 |
|
eqid |
|- ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) ) |
30 |
29
|
rnmptss |
|- ( A. s e. A ( X + s ) e. ( dom ( F |` B ) \ { ( X + D ) } ) -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) ) |
31 |
28 30
|
syl |
|- ( ph -> ran ( s e. A |-> ( X + s ) ) C_ ( dom ( F |` B ) \ { ( X + D ) } ) ) |
32 |
|
eqid |
|- ( s e. A |-> X ) = ( s e. A |-> X ) |
33 |
|
eqid |
|- ( s e. A |-> s ) = ( s e. A |-> s ) |
34 |
|
ax-resscn |
|- RR C_ CC |
35 |
3 34
|
sstrdi |
|- ( ph -> A C_ CC ) |
36 |
32 35 15 9
|
constlimc |
|- ( ph -> X e. ( ( s e. A |-> X ) limCC D ) ) |
37 |
35 33 9
|
idlimc |
|- ( ph -> D e. ( ( s e. A |-> s ) limCC D ) ) |
38 |
32 33 29 16 18 36 37
|
addlimc |
|- ( ph -> ( X + D ) e. ( ( s e. A |-> ( X + s ) ) limCC D ) ) |
39 |
31 38 8
|
limccog |
|- ( ph -> C e. ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) ) |
40 |
|
nfv |
|- F/ s ph |
41 |
40 29 5
|
rnmptssd |
|- ( ph -> ran ( s e. A |-> ( X + s ) ) C_ B ) |
42 |
|
cores |
|- ( ran ( s e. A |-> ( X + s ) ) C_ B -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) ) |
43 |
41 42
|
syl |
|- ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = ( F o. ( s e. A |-> ( X + s ) ) ) ) |
44 |
23 29
|
fmptd |
|- ( ph -> ( s e. A |-> ( X + s ) ) : A --> RR ) |
45 |
|
fcompt |
|- ( ( F : RR --> RR /\ ( s e. A |-> ( X + s ) ) : A --> RR ) -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
46 |
1 44 45
|
syl2anc |
|- ( ph -> ( F o. ( s e. A |-> ( X + s ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
47 |
4
|
a1i |
|- ( ph -> G = ( s e. A |-> ( F ` ( X + s ) ) ) ) |
48 |
|
oveq2 |
|- ( s = x -> ( X + s ) = ( X + x ) ) |
49 |
48
|
fveq2d |
|- ( s = x -> ( F ` ( X + s ) ) = ( F ` ( X + x ) ) ) |
50 |
49
|
cbvmptv |
|- ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) ) |
51 |
50
|
a1i |
|- ( ph -> ( s e. A |-> ( F ` ( X + s ) ) ) = ( x e. A |-> ( F ` ( X + x ) ) ) ) |
52 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( s e. A |-> ( X + s ) ) = ( s e. A |-> ( X + s ) ) ) |
53 |
48
|
adantl |
|- ( ( ( ph /\ x e. A ) /\ s = x ) -> ( X + s ) = ( X + x ) ) |
54 |
|
simpr |
|- ( ( ph /\ x e. A ) -> x e. A ) |
55 |
2
|
adantr |
|- ( ( ph /\ x e. A ) -> X e. RR ) |
56 |
3
|
sselda |
|- ( ( ph /\ x e. A ) -> x e. RR ) |
57 |
55 56
|
readdcld |
|- ( ( ph /\ x e. A ) -> ( X + x ) e. RR ) |
58 |
52 53 54 57
|
fvmptd |
|- ( ( ph /\ x e. A ) -> ( ( s e. A |-> ( X + s ) ) ` x ) = ( X + x ) ) |
59 |
58
|
eqcomd |
|- ( ( ph /\ x e. A ) -> ( X + x ) = ( ( s e. A |-> ( X + s ) ) ` x ) ) |
60 |
59
|
fveq2d |
|- ( ( ph /\ x e. A ) -> ( F ` ( X + x ) ) = ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) |
61 |
60
|
mpteq2dva |
|- ( ph -> ( x e. A |-> ( F ` ( X + x ) ) ) = ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) ) |
62 |
47 51 61
|
3eqtrrd |
|- ( ph -> ( x e. A |-> ( F ` ( ( s e. A |-> ( X + s ) ) ` x ) ) ) = G ) |
63 |
43 46 62
|
3eqtrd |
|- ( ph -> ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) = G ) |
64 |
63
|
oveq1d |
|- ( ph -> ( ( ( F |` B ) o. ( s e. A |-> ( X + s ) ) ) limCC D ) = ( G limCC D ) ) |
65 |
39 64
|
eleqtrd |
|- ( ph -> C e. ( G limCC D ) ) |