Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem57.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem57.xre |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem57.a |
|- ( ph -> A e. RR ) |
4 |
|
fourierdlem57.b |
|- ( ph -> B e. RR ) |
5 |
|
fourierdlem57.fdv |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
6 |
|
fourierdlem57.ab |
|- ( ph -> ( A (,) B ) C_ ( -u _pi [,] _pi ) ) |
7 |
|
fourierdlem57.n0 |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
8 |
|
fourierdlem57.c |
|- ( ph -> C e. RR ) |
9 |
|
fourierdlem57.o |
|- O = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
10 |
5
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) : ( ( X + A ) (,) ( X + B ) ) --> RR ) |
11 |
2 3
|
readdcld |
|- ( ph -> ( X + A ) e. RR ) |
12 |
11
|
rexrd |
|- ( ph -> ( X + A ) e. RR* ) |
13 |
12
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) e. RR* ) |
14 |
2 4
|
readdcld |
|- ( ph -> ( X + B ) e. RR ) |
15 |
14
|
rexrd |
|- ( ph -> ( X + B ) e. RR* ) |
16 |
15
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + B ) e. RR* ) |
17 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
18 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
19 |
18
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
20 |
17 19
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
21 |
3
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR ) |
22 |
21
|
rexrd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A e. RR* ) |
23 |
4
|
rexrd |
|- ( ph -> B e. RR* ) |
24 |
23
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR* ) |
25 |
|
simpr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( A (,) B ) ) |
26 |
|
ioogtlb |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> A < s ) |
27 |
22 24 25 26
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> A < s ) |
28 |
21 19 17 27
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + A ) < ( X + s ) ) |
29 |
4
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> B e. RR ) |
30 |
|
iooltub |
|- ( ( A e. RR* /\ B e. RR* /\ s e. ( A (,) B ) ) -> s < B ) |
31 |
22 24 25 30
|
syl3anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s < B ) |
32 |
19 29 17 31
|
ltadd2dd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) < ( X + B ) ) |
33 |
13 16 20 28 32
|
eliood |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. ( ( X + A ) (,) ( X + B ) ) ) |
34 |
10 33
|
ffvelrnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) e. RR ) |
35 |
|
2re |
|- 2 e. RR |
36 |
35
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. RR ) |
37 |
|
rehalfcl |
|- ( s e. RR -> ( s / 2 ) e. RR ) |
38 |
19 37
|
syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. RR ) |
39 |
38
|
resincld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. RR ) |
40 |
36 39
|
remulcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
41 |
34 40
|
remulcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR ) |
42 |
38
|
recoscld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( cos ` ( s / 2 ) ) e. RR ) |
43 |
1
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> F : RR --> RR ) |
44 |
43 20
|
ffvelrnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. RR ) |
45 |
8
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. RR ) |
46 |
44 45
|
resubcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. RR ) |
47 |
42 46
|
remulcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) e. RR ) |
48 |
41 47
|
resubcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) e. RR ) |
49 |
40
|
resqcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) e. RR ) |
50 |
|
2cnd |
|- ( s e. RR -> 2 e. CC ) |
51 |
37
|
recnd |
|- ( s e. RR -> ( s / 2 ) e. CC ) |
52 |
51
|
sincld |
|- ( s e. RR -> ( sin ` ( s / 2 ) ) e. CC ) |
53 |
50 52
|
mulcld |
|- ( s e. RR -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
54 |
19 53
|
syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
55 |
|
2cnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. CC ) |
56 |
19 52
|
syl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
57 |
|
2ne0 |
|- 2 =/= 0 |
58 |
57
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 =/= 0 ) |
59 |
6
|
sselda |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( -u _pi [,] _pi ) ) |
60 |
|
eqcom |
|- ( s = 0 <-> 0 = s ) |
61 |
60
|
biimpi |
|- ( s = 0 -> 0 = s ) |
62 |
61
|
adantl |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> 0 = s ) |
63 |
|
simpl |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> s e. ( A (,) B ) ) |
64 |
62 63
|
eqeltrd |
|- ( ( s e. ( A (,) B ) /\ s = 0 ) -> 0 e. ( A (,) B ) ) |
65 |
64
|
adantll |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ s = 0 ) -> 0 e. ( A (,) B ) ) |
66 |
7
|
ad2antrr |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ s = 0 ) -> -. 0 e. ( A (,) B ) ) |
67 |
65 66
|
pm2.65da |
|- ( ( ph /\ s e. ( A (,) B ) ) -> -. s = 0 ) |
68 |
67
|
neqned |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s =/= 0 ) |
69 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
70 |
59 68 69
|
syl2anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
71 |
55 56 58 70
|
mulne0d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
72 |
|
2z |
|- 2 e. ZZ |
73 |
72
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. ZZ ) |
74 |
54 71 73
|
expne0d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) =/= 0 ) |
75 |
48 49 74
|
redivcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) e. RR ) |
76 |
|
eqid |
|- ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) |
77 |
75 76
|
fmptd |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) : ( A (,) B ) --> RR ) |
78 |
9
|
a1i |
|- ( ph -> O = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
79 |
78
|
oveq2d |
|- ( ph -> ( RR _D O ) = ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
80 |
|
reelprrecn |
|- RR e. { RR , CC } |
81 |
80
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
82 |
46
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
83 |
44
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. CC ) |
84 |
|
eqid |
|- ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) |
85 |
1 2 3 4 84 5
|
fourierdlem28 |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( F ` ( X + s ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
86 |
45
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. CC ) |
87 |
|
0red |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 0 e. RR ) |
88 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
89 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
90 |
89
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
91 |
88 90
|
eleqtri |
|- ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) |
92 |
91
|
a1i |
|- ( ph -> ( A (,) B ) e. ( ( TopOpen ` CCfld ) |`t RR ) ) |
93 |
8
|
recnd |
|- ( ph -> C e. CC ) |
94 |
81 92 93
|
dvmptconst |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> C ) ) = ( s e. ( A (,) B ) |-> 0 ) ) |
95 |
81 83 34 85 86 87 94
|
dvmptsub |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) ) ) |
96 |
34
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) e. CC ) |
97 |
96
|
subid1d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) = ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) |
98 |
97
|
mpteq2dva |
|- ( ph -> ( s e. ( A (,) B ) |-> ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) - 0 ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
99 |
95 98
|
eqtrd |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( F ` ( X + s ) ) - C ) ) ) = ( s e. ( A (,) B ) |-> ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) ) ) |
100 |
|
eldifsn |
|- ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. ( CC \ { 0 } ) <-> ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC /\ ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) ) |
101 |
54 71 100
|
sylanbrc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. ( CC \ { 0 } ) ) |
102 |
|
recn |
|- ( s e. RR -> s e. CC ) |
103 |
57
|
a1i |
|- ( s e. RR -> 2 =/= 0 ) |
104 |
102 50 103
|
divrec2d |
|- ( s e. RR -> ( s / 2 ) = ( ( 1 / 2 ) x. s ) ) |
105 |
104
|
eqcomd |
|- ( s e. RR -> ( ( 1 / 2 ) x. s ) = ( s / 2 ) ) |
106 |
18 105
|
syl |
|- ( s e. ( A (,) B ) -> ( ( 1 / 2 ) x. s ) = ( s / 2 ) ) |
107 |
106
|
fveq2d |
|- ( s e. ( A (,) B ) -> ( cos ` ( ( 1 / 2 ) x. s ) ) = ( cos ` ( s / 2 ) ) ) |
108 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
109 |
108
|
a1i |
|- ( s e. CC -> ( 1 / 2 ) e. CC ) |
110 |
|
id |
|- ( s e. CC -> s e. CC ) |
111 |
109 110
|
mulcld |
|- ( s e. CC -> ( ( 1 / 2 ) x. s ) e. CC ) |
112 |
111
|
coscld |
|- ( s e. CC -> ( cos ` ( ( 1 / 2 ) x. s ) ) e. CC ) |
113 |
18 102 112
|
3syl |
|- ( s e. ( A (,) B ) -> ( cos ` ( ( 1 / 2 ) x. s ) ) e. CC ) |
114 |
107 113
|
eqeltrrd |
|- ( s e. ( A (,) B ) -> ( cos ` ( s / 2 ) ) e. CC ) |
115 |
114
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( cos ` ( s / 2 ) ) e. CC ) |
116 |
|
ioossre |
|- ( A (,) B ) C_ RR |
117 |
|
resmpt |
|- ( ( A (,) B ) C_ RR -> ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) = ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
118 |
116 117
|
ax-mp |
|- ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) = ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
119 |
118
|
eqcomi |
|- ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) |
120 |
119
|
oveq2i |
|- ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( RR _D ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) ) |
121 |
|
ax-resscn |
|- RR C_ CC |
122 |
|
eqid |
|- ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
123 |
122 53
|
fmpti |
|- ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : RR --> CC |
124 |
|
ssid |
|- RR C_ RR |
125 |
89 90
|
dvres |
|- ( ( ( RR C_ CC /\ ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : RR --> CC ) /\ ( RR C_ RR /\ ( A (,) B ) C_ RR ) ) -> ( RR _D ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) ) = ( ( RR _D ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) ) |
126 |
121 123 124 116 125
|
mp4an |
|- ( RR _D ( ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |` ( A (,) B ) ) ) = ( ( RR _D ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) |
127 |
|
resmpt |
|- ( RR C_ CC -> ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |
128 |
121 127
|
ax-mp |
|- ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) = ( s e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |
129 |
105
|
fveq2d |
|- ( s e. RR -> ( sin ` ( ( 1 / 2 ) x. s ) ) = ( sin ` ( s / 2 ) ) ) |
130 |
129
|
oveq2d |
|- ( s e. RR -> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
131 |
130
|
mpteq2ia |
|- ( s e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) = ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
132 |
128 131
|
eqtr2i |
|- ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) |
133 |
132
|
oveq2i |
|- ( RR _D ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( RR _D ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) ) |
134 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) = ( A (,) B ) |
135 |
133 134
|
reseq12i |
|- ( ( RR _D ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( ( RR _D ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) ) |` ( A (,) B ) ) |
136 |
|
eqid |
|- ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) = ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |
137 |
|
2cnd |
|- ( s e. CC -> 2 e. CC ) |
138 |
111
|
sincld |
|- ( s e. CC -> ( sin ` ( ( 1 / 2 ) x. s ) ) e. CC ) |
139 |
137 138
|
mulcld |
|- ( s e. CC -> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) e. CC ) |
140 |
136 139
|
fmpti |
|- ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) : CC --> CC |
141 |
|
ssid |
|- CC C_ CC |
142 |
|
dmmptg |
|- ( A. s e. CC ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) e. CC -> dom ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) = CC ) |
143 |
|
2cn |
|- 2 e. CC |
144 |
143 108
|
mulcli |
|- ( 2 x. ( 1 / 2 ) ) e. CC |
145 |
144
|
a1i |
|- ( s e. CC -> ( 2 x. ( 1 / 2 ) ) e. CC ) |
146 |
145 112
|
mulcld |
|- ( s e. CC -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) e. CC ) |
147 |
142 146
|
mprg |
|- dom ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) = CC |
148 |
121 147
|
sseqtrri |
|- RR C_ dom ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
149 |
|
dvasinbx |
|- ( ( 2 e. CC /\ ( 1 / 2 ) e. CC ) -> ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) = ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) ) |
150 |
143 108 149
|
mp2an |
|- ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) = ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
151 |
150
|
dmeqi |
|- dom ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) = dom ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
152 |
148 151
|
sseqtrri |
|- RR C_ dom ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |
153 |
|
dvres3 |
|- ( ( ( RR e. { RR , CC } /\ ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) ) ) -> ( RR _D ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) ) |
154 |
80 140 141 152 153
|
mp4an |
|- ( RR _D ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) ) = ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) |
155 |
154
|
reseq1i |
|- ( ( RR _D ( ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) ) |` ( A (,) B ) ) = ( ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) |` ( A (,) B ) ) |
156 |
150
|
reseq1i |
|- ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) = ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) |
157 |
156
|
reseq1i |
|- ( ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) |` ( A (,) B ) ) = ( ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) |` ( A (,) B ) ) |
158 |
|
resabs1 |
|- ( ( A (,) B ) C_ RR -> ( ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) |` ( A (,) B ) ) = ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` ( A (,) B ) ) ) |
159 |
116 158
|
ax-mp |
|- ( ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` RR ) |` ( A (,) B ) ) = ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` ( A (,) B ) ) |
160 |
|
ioosscn |
|- ( A (,) B ) C_ CC |
161 |
|
resmpt |
|- ( ( A (,) B ) C_ CC -> ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` ( A (,) B ) ) = ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) ) |
162 |
160 161
|
ax-mp |
|- ( ( s e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |` ( A (,) B ) ) = ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
163 |
157 159 162
|
3eqtri |
|- ( ( ( CC _D ( s e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. s ) ) ) ) ) |` RR ) |` ( A (,) B ) ) = ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
164 |
135 155 163
|
3eqtri |
|- ( ( RR _D ( s e. RR |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( A (,) B ) ) ) = ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
165 |
120 126 164
|
3eqtri |
|- ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
166 |
143 57
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
167 |
166
|
oveq1i |
|- ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) = ( 1 x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) |
168 |
167
|
a1i |
|- ( s e. ( A (,) B ) -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) = ( 1 x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) |
169 |
113
|
mulid2d |
|- ( s e. ( A (,) B ) -> ( 1 x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) = ( cos ` ( ( 1 / 2 ) x. s ) ) ) |
170 |
168 169 107
|
3eqtrd |
|- ( s e. ( A (,) B ) -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) = ( cos ` ( s / 2 ) ) ) |
171 |
170
|
mpteq2ia |
|- ( s e. ( A (,) B ) |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. s ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) |
172 |
165 171
|
eqtri |
|- ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) |
173 |
172
|
a1i |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) ) |
174 |
81 82 34 99 101 115 173
|
dvmptdiv |
|- ( ph -> ( RR _D ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) |
175 |
79 174
|
eqtrd |
|- ( ph -> ( RR _D O ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) |
176 |
175
|
feq1d |
|- ( ph -> ( ( RR _D O ) : ( A (,) B ) --> RR <-> ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) : ( A (,) B ) --> RR ) ) |
177 |
77 176
|
mpbird |
|- ( ph -> ( RR _D O ) : ( A (,) B ) --> RR ) |
178 |
177 175
|
jca |
|- ( ph -> ( ( RR _D O ) : ( A (,) B ) --> RR /\ ( RR _D O ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) |
179 |
178 172
|
pm3.2i |
|- ( ( ph -> ( ( RR _D O ) : ( A (,) B ) --> RR /\ ( RR _D O ) = ( s e. ( A (,) B ) |-> ( ( ( ( ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) ` ( X + s ) ) x. ( 2 x. ( sin ` ( s / 2 ) ) ) ) - ( ( cos ` ( s / 2 ) ) x. ( ( F ` ( X + s ) ) - C ) ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) ^ 2 ) ) ) ) ) /\ ( RR _D ( s e. ( A (,) B ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( A (,) B ) |-> ( cos ` ( s / 2 ) ) ) ) |