Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem62.k |
|- K = ( y e. ( -u _pi [,] _pi ) |-> if ( y = 0 , 1 , ( y / ( 2 x. ( sin ` ( y / 2 ) ) ) ) ) ) |
2 |
|
eqeq1 |
|- ( y = s -> ( y = 0 <-> s = 0 ) ) |
3 |
|
id |
|- ( y = s -> y = s ) |
4 |
|
oveq1 |
|- ( y = s -> ( y / 2 ) = ( s / 2 ) ) |
5 |
4
|
fveq2d |
|- ( y = s -> ( sin ` ( y / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
6 |
5
|
oveq2d |
|- ( y = s -> ( 2 x. ( sin ` ( y / 2 ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
7 |
3 6
|
oveq12d |
|- ( y = s -> ( y / ( 2 x. ( sin ` ( y / 2 ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
8 |
2 7
|
ifbieq2d |
|- ( y = s -> if ( y = 0 , 1 , ( y / ( 2 x. ( sin ` ( y / 2 ) ) ) ) ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
9 |
8
|
cbvmptv |
|- ( y e. ( -u _pi [,] _pi ) |-> if ( y = 0 , 1 , ( y / ( 2 x. ( sin ` ( y / 2 ) ) ) ) ) ) = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
10 |
1 9
|
eqtri |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
11 |
10
|
fourierdlem43 |
|- K : ( -u _pi [,] _pi ) --> RR |
12 |
|
ax-resscn |
|- RR C_ CC |
13 |
|
fss |
|- ( ( K : ( -u _pi [,] _pi ) --> RR /\ RR C_ CC ) -> K : ( -u _pi [,] _pi ) --> CC ) |
14 |
11 12 13
|
mp2an |
|- K : ( -u _pi [,] _pi ) --> CC |
15 |
14
|
a1i |
|- ( s = 0 -> K : ( -u _pi [,] _pi ) --> CC ) |
16 |
|
difss |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( -u _pi (,) _pi ) |
17 |
|
elioore |
|- ( s e. ( -u _pi (,) _pi ) -> s e. RR ) |
18 |
17
|
ssriv |
|- ( -u _pi (,) _pi ) C_ RR |
19 |
16 18
|
sstri |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) C_ RR |
20 |
19
|
a1i |
|- ( T. -> ( ( -u _pi (,) _pi ) \ { 0 } ) C_ RR ) |
21 |
|
eqid |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) |
22 |
19
|
sseli |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> x e. RR ) |
23 |
21 22
|
fmpti |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) : ( ( -u _pi (,) _pi ) \ { 0 } ) --> RR |
24 |
23
|
a1i |
|- ( T. -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) : ( ( -u _pi (,) _pi ) \ { 0 } ) --> RR ) |
25 |
|
eqid |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |
26 |
|
2re |
|- 2 e. RR |
27 |
26
|
a1i |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. RR ) |
28 |
22
|
rehalfcld |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x / 2 ) e. RR ) |
29 |
28
|
resincld |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( sin ` ( x / 2 ) ) e. RR ) |
30 |
27 29
|
remulcld |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( x / 2 ) ) ) e. RR ) |
31 |
25 30
|
fmpti |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( ( -u _pi (,) _pi ) \ { 0 } ) --> RR |
32 |
31
|
a1i |
|- ( T. -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( ( -u _pi (,) _pi ) \ { 0 } ) --> RR ) |
33 |
|
iooretop |
|- ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) |
34 |
33
|
a1i |
|- ( T. -> ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) ) |
35 |
|
0re |
|- 0 e. RR |
36 |
|
negpilt0 |
|- -u _pi < 0 |
37 |
|
pipos |
|- 0 < _pi |
38 |
|
pire |
|- _pi e. RR |
39 |
38
|
renegcli |
|- -u _pi e. RR |
40 |
39
|
rexri |
|- -u _pi e. RR* |
41 |
38
|
rexri |
|- _pi e. RR* |
42 |
|
elioo2 |
|- ( ( -u _pi e. RR* /\ _pi e. RR* ) -> ( 0 e. ( -u _pi (,) _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < _pi ) ) ) |
43 |
40 41 42
|
mp2an |
|- ( 0 e. ( -u _pi (,) _pi ) <-> ( 0 e. RR /\ -u _pi < 0 /\ 0 < _pi ) ) |
44 |
35 36 37 43
|
mpbir3an |
|- 0 e. ( -u _pi (,) _pi ) |
45 |
44
|
a1i |
|- ( T. -> 0 e. ( -u _pi (,) _pi ) ) |
46 |
|
eqid |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) = ( ( -u _pi (,) _pi ) \ { 0 } ) |
47 |
|
1ex |
|- 1 e. _V |
48 |
|
eqid |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) |
49 |
47 48
|
dmmpti |
|- dom ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) = ( ( -u _pi (,) _pi ) \ { 0 } ) |
50 |
|
reelprrecn |
|- RR e. { RR , CC } |
51 |
50
|
a1i |
|- ( T. -> RR e. { RR , CC } ) |
52 |
12
|
sseli |
|- ( x e. RR -> x e. CC ) |
53 |
52
|
adantl |
|- ( ( T. /\ x e. RR ) -> x e. CC ) |
54 |
|
1red |
|- ( ( T. /\ x e. RR ) -> 1 e. RR ) |
55 |
51
|
dvmptid |
|- ( T. -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
56 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
57 |
56
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
58 |
|
sncldre |
|- ( 0 e. RR -> { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) ) |
59 |
35 58
|
ax-mp |
|- { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) |
60 |
|
retopon |
|- ( topGen ` ran (,) ) e. ( TopOn ` RR ) |
61 |
60
|
toponunii |
|- RR = U. ( topGen ` ran (,) ) |
62 |
61
|
difopn |
|- ( ( ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) /\ { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) ) -> ( ( -u _pi (,) _pi ) \ { 0 } ) e. ( topGen ` ran (,) ) ) |
63 |
33 59 62
|
mp2an |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) e. ( topGen ` ran (,) ) |
64 |
63
|
a1i |
|- ( T. -> ( ( -u _pi (,) _pi ) \ { 0 } ) e. ( topGen ` ran (,) ) ) |
65 |
51 53 54 55 20 57 56 64
|
dvmptres |
|- ( T. -> ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) ) |
66 |
65
|
mptru |
|- ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) |
67 |
66
|
eqcomi |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) = ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
68 |
67
|
dmeqi |
|- dom ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) = dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
69 |
49 68
|
eqtr3i |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) = dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
70 |
69
|
eqimssi |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) C_ dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
71 |
70
|
a1i |
|- ( T. -> ( ( -u _pi (,) _pi ) \ { 0 } ) C_ dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ) |
72 |
|
fvex |
|- ( cos ` ( x / 2 ) ) e. _V |
73 |
|
eqid |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) |
74 |
72 73
|
dmmpti |
|- dom ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) = ( ( -u _pi (,) _pi ) \ { 0 } ) |
75 |
|
2cnd |
|- ( ( T. /\ x e. RR ) -> 2 e. CC ) |
76 |
53
|
halfcld |
|- ( ( T. /\ x e. RR ) -> ( x / 2 ) e. CC ) |
77 |
76
|
sincld |
|- ( ( T. /\ x e. RR ) -> ( sin ` ( x / 2 ) ) e. CC ) |
78 |
75 77
|
mulcld |
|- ( ( T. /\ x e. RR ) -> ( 2 x. ( sin ` ( x / 2 ) ) ) e. CC ) |
79 |
76
|
coscld |
|- ( ( T. /\ x e. RR ) -> ( cos ` ( x / 2 ) ) e. CC ) |
80 |
|
2cnd |
|- ( x e. RR -> 2 e. CC ) |
81 |
|
2ne0 |
|- 2 =/= 0 |
82 |
81
|
a1i |
|- ( x e. RR -> 2 =/= 0 ) |
83 |
52 80 82
|
divrec2d |
|- ( x e. RR -> ( x / 2 ) = ( ( 1 / 2 ) x. x ) ) |
84 |
83
|
fveq2d |
|- ( x e. RR -> ( sin ` ( x / 2 ) ) = ( sin ` ( ( 1 / 2 ) x. x ) ) ) |
85 |
84
|
oveq2d |
|- ( x e. RR -> ( 2 x. ( sin ` ( x / 2 ) ) ) = ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |
86 |
85
|
mpteq2ia |
|- ( x e. RR |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) = ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |
87 |
86
|
oveq2i |
|- ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |
88 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) = ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |
89 |
12 88
|
ax-mp |
|- ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) = ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |
90 |
89
|
eqcomi |
|- ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) = ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) |
91 |
90
|
oveq2i |
|- ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) = ( RR _D ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) ) |
92 |
|
eqid |
|- ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) = ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |
93 |
|
2cnd |
|- ( x e. CC -> 2 e. CC ) |
94 |
|
halfcn |
|- ( 1 / 2 ) e. CC |
95 |
94
|
a1i |
|- ( x e. CC -> ( 1 / 2 ) e. CC ) |
96 |
|
id |
|- ( x e. CC -> x e. CC ) |
97 |
95 96
|
mulcld |
|- ( x e. CC -> ( ( 1 / 2 ) x. x ) e. CC ) |
98 |
97
|
sincld |
|- ( x e. CC -> ( sin ` ( ( 1 / 2 ) x. x ) ) e. CC ) |
99 |
93 98
|
mulcld |
|- ( x e. CC -> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) e. CC ) |
100 |
92 99
|
fmpti |
|- ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) : CC --> CC |
101 |
|
eqid |
|- ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) = ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |
102 |
|
2cn |
|- 2 e. CC |
103 |
102 94
|
mulcli |
|- ( 2 x. ( 1 / 2 ) ) e. CC |
104 |
103
|
a1i |
|- ( x e. CC -> ( 2 x. ( 1 / 2 ) ) e. CC ) |
105 |
97
|
coscld |
|- ( x e. CC -> ( cos ` ( ( 1 / 2 ) x. x ) ) e. CC ) |
106 |
104 105
|
mulcld |
|- ( x e. CC -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) e. CC ) |
107 |
106
|
adantl |
|- ( ( T. /\ x e. CC ) -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) e. CC ) |
108 |
101 107
|
dmmptd |
|- ( T. -> dom ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) = CC ) |
109 |
108
|
mptru |
|- dom ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) = CC |
110 |
12 109
|
sseqtrri |
|- RR C_ dom ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |
111 |
|
dvasinbx |
|- ( ( 2 e. CC /\ ( 1 / 2 ) e. CC ) -> ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) = ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) ) |
112 |
102 94 111
|
mp2an |
|- ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) = ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |
113 |
112
|
dmeqi |
|- dom ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) = dom ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |
114 |
110 113
|
sseqtrri |
|- RR C_ dom ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |
115 |
|
dvcnre |
|- ( ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) : CC --> CC /\ RR C_ dom ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) ) -> ( RR _D ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) ) = ( ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |` RR ) ) |
116 |
100 114 115
|
mp2an |
|- ( RR _D ( ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) ) = ( ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |` RR ) |
117 |
112
|
reseq1i |
|- ( ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |` RR ) = ( ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) |
118 |
|
resmpt |
|- ( RR C_ CC -> ( ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) = ( x e. RR |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) ) |
119 |
12 118
|
ax-mp |
|- ( ( x e. CC |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |` RR ) = ( x e. RR |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) |
120 |
102 81
|
recidi |
|- ( 2 x. ( 1 / 2 ) ) = 1 |
121 |
120
|
a1i |
|- ( x e. RR -> ( 2 x. ( 1 / 2 ) ) = 1 ) |
122 |
83
|
eqcomd |
|- ( x e. RR -> ( ( 1 / 2 ) x. x ) = ( x / 2 ) ) |
123 |
122
|
fveq2d |
|- ( x e. RR -> ( cos ` ( ( 1 / 2 ) x. x ) ) = ( cos ` ( x / 2 ) ) ) |
124 |
121 123
|
oveq12d |
|- ( x e. RR -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) = ( 1 x. ( cos ` ( x / 2 ) ) ) ) |
125 |
52
|
halfcld |
|- ( x e. RR -> ( x / 2 ) e. CC ) |
126 |
125
|
coscld |
|- ( x e. RR -> ( cos ` ( x / 2 ) ) e. CC ) |
127 |
126
|
mulid2d |
|- ( x e. RR -> ( 1 x. ( cos ` ( x / 2 ) ) ) = ( cos ` ( x / 2 ) ) ) |
128 |
124 127
|
eqtrd |
|- ( x e. RR -> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) = ( cos ` ( x / 2 ) ) ) |
129 |
128
|
mpteq2ia |
|- ( x e. RR |-> ( ( 2 x. ( 1 / 2 ) ) x. ( cos ` ( ( 1 / 2 ) x. x ) ) ) ) = ( x e. RR |-> ( cos ` ( x / 2 ) ) ) |
130 |
117 119 129
|
3eqtri |
|- ( ( CC _D ( x e. CC |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) |` RR ) = ( x e. RR |-> ( cos ` ( x / 2 ) ) ) |
131 |
91 116 130
|
3eqtri |
|- ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( ( 1 / 2 ) x. x ) ) ) ) ) = ( x e. RR |-> ( cos ` ( x / 2 ) ) ) |
132 |
87 131
|
eqtri |
|- ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( x e. RR |-> ( cos ` ( x / 2 ) ) ) |
133 |
132
|
a1i |
|- ( T. -> ( RR _D ( x e. RR |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( x e. RR |-> ( cos ` ( x / 2 ) ) ) ) |
134 |
51 78 79 133 20 57 56 64
|
dvmptres |
|- ( T. -> ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ) |
135 |
134
|
mptru |
|- ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) |
136 |
135
|
eqcomi |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) = ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
137 |
136
|
dmeqi |
|- dom ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) = dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
138 |
74 137
|
eqtr3i |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) = dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
139 |
138
|
eqimssi |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) C_ dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
140 |
139
|
a1i |
|- ( T. -> ( ( -u _pi (,) _pi ) \ { 0 } ) C_ dom ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ) |
141 |
17
|
recnd |
|- ( s e. ( -u _pi (,) _pi ) -> s e. CC ) |
142 |
141
|
ssriv |
|- ( -u _pi (,) _pi ) C_ CC |
143 |
142
|
a1i |
|- ( T. -> ( -u _pi (,) _pi ) C_ CC ) |
144 |
|
ssid |
|- CC C_ CC |
145 |
144
|
a1i |
|- ( T. -> CC C_ CC ) |
146 |
143 145
|
idcncfg |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> x ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
147 |
146
|
mptru |
|- ( x e. ( -u _pi (,) _pi ) |-> x ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) |
148 |
|
cnlimc |
|- ( ( -u _pi (,) _pi ) C_ CC -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> x ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) ) ) ) |
149 |
142 148
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> x ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) ) ) |
150 |
147 149
|
mpbi |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) ) |
151 |
150
|
simpri |
|- A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) |
152 |
|
fveq2 |
|- ( y = 0 -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) = ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) ) |
153 |
|
oveq2 |
|- ( y = 0 -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) = ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) ) |
154 |
152 153
|
eleq12d |
|- ( y = 0 -> ( ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) ) ) |
155 |
154
|
rspccva |
|- ( ( A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC y ) /\ 0 e. ( -u _pi (,) _pi ) ) -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) ) |
156 |
151 44 155
|
mp2an |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) |
157 |
|
id |
|- ( x = 0 -> x = 0 ) |
158 |
|
eqid |
|- ( x e. ( -u _pi (,) _pi ) |-> x ) = ( x e. ( -u _pi (,) _pi ) |-> x ) |
159 |
|
c0ex |
|- 0 e. _V |
160 |
157 158 159
|
fvmpt |
|- ( 0 e. ( -u _pi (,) _pi ) -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) = 0 ) |
161 |
44 160
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) ` 0 ) = 0 |
162 |
|
elioore |
|- ( x e. ( -u _pi (,) _pi ) -> x e. RR ) |
163 |
162
|
recnd |
|- ( x e. ( -u _pi (,) _pi ) -> x e. CC ) |
164 |
158 163
|
fmpti |
|- ( x e. ( -u _pi (,) _pi ) |-> x ) : ( -u _pi (,) _pi ) --> CC |
165 |
164
|
a1i |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> x ) : ( -u _pi (,) _pi ) --> CC ) |
166 |
165
|
limcdif |
|- ( T. -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) = ( ( ( x e. ( -u _pi (,) _pi ) |-> x ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) ) |
167 |
166
|
mptru |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) = ( ( ( x e. ( -u _pi (,) _pi ) |-> x ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) |
168 |
|
resmpt |
|- ( ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( -u _pi (,) _pi ) -> ( ( x e. ( -u _pi (,) _pi ) |-> x ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
169 |
16 168
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) |
170 |
169
|
oveq1i |
|- ( ( ( x e. ( -u _pi (,) _pi ) |-> x ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) limCC 0 ) |
171 |
167 170
|
eqtri |
|- ( ( x e. ( -u _pi (,) _pi ) |-> x ) limCC 0 ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) limCC 0 ) |
172 |
156 161 171
|
3eltr3i |
|- 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) limCC 0 ) |
173 |
172
|
a1i |
|- ( T. -> 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) limCC 0 ) ) |
174 |
|
eqid |
|- ( x e. CC |-> 2 ) = ( x e. CC |-> 2 ) |
175 |
144
|
a1i |
|- ( 2 e. CC -> CC C_ CC ) |
176 |
|
2cnd |
|- ( 2 e. CC -> 2 e. CC ) |
177 |
175 176 175
|
constcncfg |
|- ( 2 e. CC -> ( x e. CC |-> 2 ) e. ( CC -cn-> CC ) ) |
178 |
102 177
|
mp1i |
|- ( T. -> ( x e. CC |-> 2 ) e. ( CC -cn-> CC ) ) |
179 |
|
2cnd |
|- ( ( T. /\ x e. ( -u _pi (,) _pi ) ) -> 2 e. CC ) |
180 |
174 178 143 145 179
|
cncfmptssg |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> 2 ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
181 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
182 |
181
|
a1i |
|- ( T. -> sin e. ( CC -cn-> CC ) ) |
183 |
|
eqid |
|- ( x e. CC |-> ( x / 2 ) ) = ( x e. CC |-> ( x / 2 ) ) |
184 |
183
|
divccncf |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( x e. CC |-> ( x / 2 ) ) e. ( CC -cn-> CC ) ) |
185 |
102 81 184
|
mp2an |
|- ( x e. CC |-> ( x / 2 ) ) e. ( CC -cn-> CC ) |
186 |
185
|
a1i |
|- ( T. -> ( x e. CC |-> ( x / 2 ) ) e. ( CC -cn-> CC ) ) |
187 |
163
|
adantl |
|- ( ( T. /\ x e. ( -u _pi (,) _pi ) ) -> x e. CC ) |
188 |
187
|
halfcld |
|- ( ( T. /\ x e. ( -u _pi (,) _pi ) ) -> ( x / 2 ) e. CC ) |
189 |
183 186 143 145 188
|
cncfmptssg |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> ( x / 2 ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
190 |
182 189
|
cncfmpt1f |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> ( sin ` ( x / 2 ) ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
191 |
180 190
|
mulcncf |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
192 |
191
|
mptru |
|- ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) |
193 |
|
cnlimc |
|- ( ( -u _pi (,) _pi ) C_ CC -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) ) ) ) |
194 |
142 193
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) ) ) |
195 |
192 194
|
mpbi |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( -u _pi (,) _pi ) --> CC /\ A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) ) |
196 |
195
|
simpri |
|- A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) |
197 |
|
fveq2 |
|- ( y = 0 -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) ) |
198 |
|
oveq2 |
|- ( y = 0 -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) = ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) ) |
199 |
197 198
|
eleq12d |
|- ( y = 0 -> ( ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) <-> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) ) ) |
200 |
199
|
rspccva |
|- ( ( A. y e. ( -u _pi (,) _pi ) ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC y ) /\ 0 e. ( -u _pi (,) _pi ) ) -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) ) |
201 |
196 44 200
|
mp2an |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) e. ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) |
202 |
|
oveq1 |
|- ( x = 0 -> ( x / 2 ) = ( 0 / 2 ) ) |
203 |
102 81
|
div0i |
|- ( 0 / 2 ) = 0 |
204 |
202 203
|
eqtrdi |
|- ( x = 0 -> ( x / 2 ) = 0 ) |
205 |
204
|
fveq2d |
|- ( x = 0 -> ( sin ` ( x / 2 ) ) = ( sin ` 0 ) ) |
206 |
|
sin0 |
|- ( sin ` 0 ) = 0 |
207 |
205 206
|
eqtrdi |
|- ( x = 0 -> ( sin ` ( x / 2 ) ) = 0 ) |
208 |
207
|
oveq2d |
|- ( x = 0 -> ( 2 x. ( sin ` ( x / 2 ) ) ) = ( 2 x. 0 ) ) |
209 |
|
2t0e0 |
|- ( 2 x. 0 ) = 0 |
210 |
208 209
|
eqtrdi |
|- ( x = 0 -> ( 2 x. ( sin ` ( x / 2 ) ) ) = 0 ) |
211 |
|
eqid |
|- ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) = ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |
212 |
210 211 159
|
fvmpt |
|- ( 0 e. ( -u _pi (,) _pi ) -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) = 0 ) |
213 |
44 212
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` 0 ) = 0 |
214 |
|
2cnd |
|- ( x e. ( -u _pi (,) _pi ) -> 2 e. CC ) |
215 |
163
|
halfcld |
|- ( x e. ( -u _pi (,) _pi ) -> ( x / 2 ) e. CC ) |
216 |
215
|
sincld |
|- ( x e. ( -u _pi (,) _pi ) -> ( sin ` ( x / 2 ) ) e. CC ) |
217 |
214 216
|
mulcld |
|- ( x e. ( -u _pi (,) _pi ) -> ( 2 x. ( sin ` ( x / 2 ) ) ) e. CC ) |
218 |
211 217
|
fmpti |
|- ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( -u _pi (,) _pi ) --> CC |
219 |
218
|
a1i |
|- ( T. -> ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) : ( -u _pi (,) _pi ) --> CC ) |
220 |
219
|
limcdif |
|- ( T. -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) = ( ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) ) |
221 |
220
|
mptru |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) = ( ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) |
222 |
|
resmpt |
|- ( ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( -u _pi (,) _pi ) -> ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
223 |
16 222
|
ax-mp |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |
224 |
223
|
oveq1i |
|- ( ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) |
225 |
221 224
|
eqtri |
|- ( ( x e. ( -u _pi (,) _pi ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) |
226 |
201 213 225
|
3eltr3i |
|- 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) |
227 |
226
|
a1i |
|- ( T. -> 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) limCC 0 ) ) |
228 |
|
eqidd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
229 |
|
oveq1 |
|- ( x = y -> ( x / 2 ) = ( y / 2 ) ) |
230 |
229
|
fveq2d |
|- ( x = y -> ( sin ` ( x / 2 ) ) = ( sin ` ( y / 2 ) ) ) |
231 |
230
|
oveq2d |
|- ( x = y -> ( 2 x. ( sin ` ( x / 2 ) ) ) = ( 2 x. ( sin ` ( y / 2 ) ) ) ) |
232 |
231
|
adantl |
|- ( ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = y ) -> ( 2 x. ( sin ` ( x / 2 ) ) ) = ( 2 x. ( sin ` ( y / 2 ) ) ) ) |
233 |
|
id |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
234 |
26
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. RR ) |
235 |
19
|
sseli |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y e. RR ) |
236 |
235
|
rehalfcld |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( y / 2 ) e. RR ) |
237 |
236
|
resincld |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( sin ` ( y / 2 ) ) e. RR ) |
238 |
234 237
|
remulcld |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( y / 2 ) ) ) e. RR ) |
239 |
228 232 233 238
|
fvmptd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = ( 2 x. ( sin ` ( y / 2 ) ) ) ) |
240 |
|
2cnd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. CC ) |
241 |
237
|
recnd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( sin ` ( y / 2 ) ) e. CC ) |
242 |
81
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 =/= 0 ) |
243 |
|
ioossicc |
|- ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) |
244 |
|
eldifi |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y e. ( -u _pi (,) _pi ) ) |
245 |
243 244
|
sselid |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y e. ( -u _pi [,] _pi ) ) |
246 |
|
eldifsni |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y =/= 0 ) |
247 |
|
fourierdlem44 |
|- ( ( y e. ( -u _pi [,] _pi ) /\ y =/= 0 ) -> ( sin ` ( y / 2 ) ) =/= 0 ) |
248 |
245 246 247
|
syl2anc |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( sin ` ( y / 2 ) ) =/= 0 ) |
249 |
240 241 242 248
|
mulne0d |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( y / 2 ) ) ) =/= 0 ) |
250 |
239 249
|
eqnetrd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) =/= 0 ) |
251 |
250
|
neneqd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = 0 ) |
252 |
251
|
nrex |
|- -. E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = 0 |
253 |
25
|
fnmpt |
|- ( A. x e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( 2 x. ( sin ` ( x / 2 ) ) ) e. RR -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) Fn ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
254 |
253 30
|
mprg |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) Fn ( ( -u _pi (,) _pi ) \ { 0 } ) |
255 |
|
ssid |
|- ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( ( -u _pi (,) _pi ) \ { 0 } ) |
256 |
|
fvelimab |
|- ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) Fn ( ( -u _pi (,) _pi ) \ { 0 } ) /\ ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( ( -u _pi (,) _pi ) \ { 0 } ) ) -> ( 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) <-> E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = 0 ) ) |
257 |
254 255 256
|
mp2an |
|- ( 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) <-> E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` y ) = 0 ) |
258 |
252 257
|
mtbir |
|- -. 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
259 |
258
|
a1i |
|- ( T. -> -. 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) ) |
260 |
|
eqidd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ) |
261 |
229
|
fveq2d |
|- ( x = y -> ( cos ` ( x / 2 ) ) = ( cos ` ( y / 2 ) ) ) |
262 |
261
|
adantl |
|- ( ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = y ) -> ( cos ` ( x / 2 ) ) = ( cos ` ( y / 2 ) ) ) |
263 |
235
|
recnd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y e. CC ) |
264 |
263
|
halfcld |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( y / 2 ) e. CC ) |
265 |
264
|
coscld |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( y / 2 ) ) e. CC ) |
266 |
260 262 233 265
|
fvmptd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) = ( cos ` ( y / 2 ) ) ) |
267 |
236
|
rered |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( Re ` ( y / 2 ) ) = ( y / 2 ) ) |
268 |
|
halfpire |
|- ( _pi / 2 ) e. RR |
269 |
268
|
renegcli |
|- -u ( _pi / 2 ) e. RR |
270 |
269
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) e. RR ) |
271 |
270
|
rexrd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) e. RR* ) |
272 |
268
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( _pi / 2 ) e. RR ) |
273 |
272
|
rexrd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( _pi / 2 ) e. RR* ) |
274 |
|
picn |
|- _pi e. CC |
275 |
|
divneg |
|- ( ( _pi e. CC /\ 2 e. CC /\ 2 =/= 0 ) -> -u ( _pi / 2 ) = ( -u _pi / 2 ) ) |
276 |
274 102 81 275
|
mp3an |
|- -u ( _pi / 2 ) = ( -u _pi / 2 ) |
277 |
39
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi e. RR ) |
278 |
|
2rp |
|- 2 e. RR+ |
279 |
278
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. RR+ ) |
280 |
40
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi e. RR* ) |
281 |
41
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> _pi e. RR* ) |
282 |
|
ioogtlb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ y e. ( -u _pi (,) _pi ) ) -> -u _pi < y ) |
283 |
280 281 244 282
|
syl3anc |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi < y ) |
284 |
277 235 279 283
|
ltdiv1dd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( -u _pi / 2 ) < ( y / 2 ) ) |
285 |
276 284
|
eqbrtrid |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) < ( y / 2 ) ) |
286 |
38
|
a1i |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> _pi e. RR ) |
287 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ y e. ( -u _pi (,) _pi ) ) -> y < _pi ) |
288 |
280 281 244 287
|
syl3anc |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> y < _pi ) |
289 |
235 286 279 288
|
ltdiv1dd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( y / 2 ) < ( _pi / 2 ) ) |
290 |
271 273 236 285 289
|
eliood |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( y / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
291 |
267 290
|
eqeltrd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( Re ` ( y / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
292 |
|
cosne0 |
|- ( ( ( y / 2 ) e. CC /\ ( Re ` ( y / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( y / 2 ) ) =/= 0 ) |
293 |
264 291 292
|
syl2anc |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( y / 2 ) ) =/= 0 ) |
294 |
266 293
|
eqnetrd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) =/= 0 ) |
295 |
294
|
neneqd |
|- ( y e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) = 0 ) |
296 |
295
|
nrex |
|- -. E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) = 0 |
297 |
72 73
|
fnmpti |
|- ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) Fn ( ( -u _pi (,) _pi ) \ { 0 } ) |
298 |
|
fvelimab |
|- ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) Fn ( ( -u _pi (,) _pi ) \ { 0 } ) /\ ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( ( -u _pi (,) _pi ) \ { 0 } ) ) -> ( 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) <-> E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) = 0 ) ) |
299 |
297 255 298
|
mp2an |
|- ( 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) <-> E. y e. ( ( -u _pi (,) _pi ) \ { 0 } ) ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ` y ) = 0 ) |
300 |
296 299
|
mtbir |
|- -. 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
301 |
135
|
imaeq1i |
|- ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
302 |
301
|
eleq2i |
|- ( 0 e. ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) <-> 0 e. ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) ) |
303 |
300 302
|
mtbir |
|- -. 0 e. ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
304 |
303
|
a1i |
|- ( T. -> -. 0 e. ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) " ( ( -u _pi (,) _pi ) \ { 0 } ) ) ) |
305 |
|
eqid |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( s / 2 ) ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( s / 2 ) ) ) |
306 |
|
eqid |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 1 / ( cos ` ( s / 2 ) ) ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 1 / ( cos ` ( s / 2 ) ) ) ) |
307 |
19
|
sseli |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> s e. RR ) |
308 |
307
|
recnd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> s e. CC ) |
309 |
308
|
halfcld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( s / 2 ) e. CC ) |
310 |
309
|
coscld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( s / 2 ) ) e. CC ) |
311 |
307
|
rehalfcld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( s / 2 ) e. RR ) |
312 |
311
|
rered |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( Re ` ( s / 2 ) ) = ( s / 2 ) ) |
313 |
269
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) e. RR ) |
314 |
313
|
rexrd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) e. RR* ) |
315 |
268
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( _pi / 2 ) e. RR ) |
316 |
315
|
rexrd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( _pi / 2 ) e. RR* ) |
317 |
38
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> _pi e. RR ) |
318 |
317
|
renegcld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi e. RR ) |
319 |
278
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. RR+ ) |
320 |
40
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi e. RR* ) |
321 |
41
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> _pi e. RR* ) |
322 |
|
eldifi |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> s e. ( -u _pi (,) _pi ) ) |
323 |
|
ioogtlb |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ s e. ( -u _pi (,) _pi ) ) -> -u _pi < s ) |
324 |
320 321 322 323
|
syl3anc |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u _pi < s ) |
325 |
318 307 319 324
|
ltdiv1dd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( -u _pi / 2 ) < ( s / 2 ) ) |
326 |
276 325
|
eqbrtrid |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -u ( _pi / 2 ) < ( s / 2 ) ) |
327 |
|
iooltub |
|- ( ( -u _pi e. RR* /\ _pi e. RR* /\ s e. ( -u _pi (,) _pi ) ) -> s < _pi ) |
328 |
320 321 322 327
|
syl3anc |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> s < _pi ) |
329 |
307 317 319 328
|
ltdiv1dd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( s / 2 ) < ( _pi / 2 ) ) |
330 |
314 316 311 326 329
|
eliood |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( s / 2 ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
331 |
312 330
|
eqeltrd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( Re ` ( s / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) |
332 |
|
cosne0 |
|- ( ( ( s / 2 ) e. CC /\ ( Re ` ( s / 2 ) ) e. ( -u ( _pi / 2 ) (,) ( _pi / 2 ) ) ) -> ( cos ` ( s / 2 ) ) =/= 0 ) |
333 |
309 331 332
|
syl2anc |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( s / 2 ) ) =/= 0 ) |
334 |
333
|
neneqd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. ( cos ` ( s / 2 ) ) = 0 ) |
335 |
311
|
recoscld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( s / 2 ) ) e. RR ) |
336 |
|
elsng |
|- ( ( cos ` ( s / 2 ) ) e. RR -> ( ( cos ` ( s / 2 ) ) e. { 0 } <-> ( cos ` ( s / 2 ) ) = 0 ) ) |
337 |
335 336
|
syl |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( cos ` ( s / 2 ) ) e. { 0 } <-> ( cos ` ( s / 2 ) ) = 0 ) ) |
338 |
334 337
|
mtbird |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. ( cos ` ( s / 2 ) ) e. { 0 } ) |
339 |
310 338
|
eldifd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( s / 2 ) ) e. ( CC \ { 0 } ) ) |
340 |
339
|
adantl |
|- ( ( T. /\ s e. ( ( -u _pi (,) _pi ) \ { 0 } ) ) -> ( cos ` ( s / 2 ) ) e. ( CC \ { 0 } ) ) |
341 |
309
|
ad2antrl |
|- ( ( T. /\ ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ ( s / 2 ) =/= 0 ) ) -> ( s / 2 ) e. CC ) |
342 |
|
cosf |
|- cos : CC --> CC |
343 |
342
|
a1i |
|- ( T. -> cos : CC --> CC ) |
344 |
343
|
ffvelrnda |
|- ( ( T. /\ x e. CC ) -> ( cos ` x ) e. CC ) |
345 |
|
eqid |
|- ( s e. CC |-> ( s / 2 ) ) = ( s e. CC |-> ( s / 2 ) ) |
346 |
345
|
divccncf |
|- ( ( 2 e. CC /\ 2 =/= 0 ) -> ( s e. CC |-> ( s / 2 ) ) e. ( CC -cn-> CC ) ) |
347 |
102 81 346
|
mp2an |
|- ( s e. CC |-> ( s / 2 ) ) e. ( CC -cn-> CC ) |
348 |
347
|
a1i |
|- ( T. -> ( s e. CC |-> ( s / 2 ) ) e. ( CC -cn-> CC ) ) |
349 |
141
|
adantl |
|- ( ( T. /\ s e. ( -u _pi (,) _pi ) ) -> s e. CC ) |
350 |
349
|
halfcld |
|- ( ( T. /\ s e. ( -u _pi (,) _pi ) ) -> ( s / 2 ) e. CC ) |
351 |
345 348 143 145 350
|
cncfmptssg |
|- ( T. -> ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) e. ( ( -u _pi (,) _pi ) -cn-> CC ) ) |
352 |
|
oveq1 |
|- ( s = 0 -> ( s / 2 ) = ( 0 / 2 ) ) |
353 |
352 203
|
eqtrdi |
|- ( s = 0 -> ( s / 2 ) = 0 ) |
354 |
351 45 353
|
cnmptlimc |
|- ( T. -> 0 e. ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) limCC 0 ) ) |
355 |
|
eqid |
|- ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) = ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |
356 |
141
|
halfcld |
|- ( s e. ( -u _pi (,) _pi ) -> ( s / 2 ) e. CC ) |
357 |
355 356
|
fmpti |
|- ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) : ( -u _pi (,) _pi ) --> CC |
358 |
357
|
a1i |
|- ( T. -> ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) : ( -u _pi (,) _pi ) --> CC ) |
359 |
358
|
limcdif |
|- ( T. -> ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) limCC 0 ) = ( ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) ) |
360 |
359
|
mptru |
|- ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) limCC 0 ) = ( ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) |
361 |
|
resmpt |
|- ( ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( -u _pi (,) _pi ) -> ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / 2 ) ) ) |
362 |
16 361
|
ax-mp |
|- ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / 2 ) ) |
363 |
362
|
oveq1i |
|- ( ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) = ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / 2 ) ) limCC 0 ) |
364 |
360 363
|
eqtri |
|- ( ( s e. ( -u _pi (,) _pi ) |-> ( s / 2 ) ) limCC 0 ) = ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / 2 ) ) limCC 0 ) |
365 |
354 364
|
eleqtrdi |
|- ( T. -> 0 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / 2 ) ) limCC 0 ) ) |
366 |
|
ffn |
|- ( cos : CC --> CC -> cos Fn CC ) |
367 |
342 366
|
ax-mp |
|- cos Fn CC |
368 |
|
dffn5 |
|- ( cos Fn CC <-> cos = ( x e. CC |-> ( cos ` x ) ) ) |
369 |
367 368
|
mpbi |
|- cos = ( x e. CC |-> ( cos ` x ) ) |
370 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
371 |
369 370
|
eqeltrri |
|- ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) |
372 |
371
|
a1i |
|- ( T. -> ( x e. CC |-> ( cos ` x ) ) e. ( CC -cn-> CC ) ) |
373 |
|
0cnd |
|- ( T. -> 0 e. CC ) |
374 |
|
fveq2 |
|- ( x = 0 -> ( cos ` x ) = ( cos ` 0 ) ) |
375 |
|
cos0 |
|- ( cos ` 0 ) = 1 |
376 |
374 375
|
eqtrdi |
|- ( x = 0 -> ( cos ` x ) = 1 ) |
377 |
372 373 376
|
cnmptlimc |
|- ( T. -> 1 e. ( ( x e. CC |-> ( cos ` x ) ) limCC 0 ) ) |
378 |
|
fveq2 |
|- ( x = ( s / 2 ) -> ( cos ` x ) = ( cos ` ( s / 2 ) ) ) |
379 |
|
fveq2 |
|- ( ( s / 2 ) = 0 -> ( cos ` ( s / 2 ) ) = ( cos ` 0 ) ) |
380 |
379 375
|
eqtrdi |
|- ( ( s / 2 ) = 0 -> ( cos ` ( s / 2 ) ) = 1 ) |
381 |
380
|
ad2antll |
|- ( ( T. /\ ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ ( s / 2 ) = 0 ) ) -> ( cos ` ( s / 2 ) ) = 1 ) |
382 |
341 344 365 377 378 381
|
limcco |
|- ( T. -> 1 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( s / 2 ) ) ) limCC 0 ) ) |
383 |
|
ax-1ne0 |
|- 1 =/= 0 |
384 |
383
|
a1i |
|- ( T. -> 1 =/= 0 ) |
385 |
305 306 340 382 384
|
reclimc |
|- ( T. -> ( 1 / 1 ) e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 1 / ( cos ` ( s / 2 ) ) ) ) limCC 0 ) ) |
386 |
|
1div1e1 |
|- ( 1 / 1 ) = 1 |
387 |
66
|
fveq1i |
|- ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) = ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) ` s ) |
388 |
|
eqidd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) ) |
389 |
|
eqidd |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> 1 = 1 ) |
390 |
|
id |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> s e. ( ( -u _pi (,) _pi ) \ { 0 } ) ) |
391 |
|
1red |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 1 e. RR ) |
392 |
388 389 390 391
|
fvmptd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> 1 ) ` s ) = 1 ) |
393 |
387 392
|
eqtr2id |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 1 = ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) ) |
394 |
135
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( cos ` ( x / 2 ) ) ) ) |
395 |
|
oveq1 |
|- ( x = s -> ( x / 2 ) = ( s / 2 ) ) |
396 |
395
|
fveq2d |
|- ( x = s -> ( cos ` ( x / 2 ) ) = ( cos ` ( s / 2 ) ) ) |
397 |
396
|
adantl |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> ( cos ` ( x / 2 ) ) = ( cos ` ( s / 2 ) ) ) |
398 |
394 397 390 335
|
fvmptd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) = ( cos ` ( s / 2 ) ) ) |
399 |
398
|
eqcomd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( cos ` ( s / 2 ) ) = ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) ) |
400 |
393 399
|
oveq12d |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( 1 / ( cos ` ( s / 2 ) ) ) = ( ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) / ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) ) ) |
401 |
400
|
mpteq2ia |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 1 / ( cos ` ( s / 2 ) ) ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) / ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) ) ) |
402 |
401
|
oveq1i |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 1 / ( cos ` ( s / 2 ) ) ) ) limCC 0 ) = ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) / ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) ) ) limCC 0 ) |
403 |
385 386 402
|
3eltr3g |
|- ( T. -> 1 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) ` s ) / ( ( RR _D ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) ` s ) ) ) limCC 0 ) ) |
404 |
20 24 32 34 45 46 71 140 173 227 259 304 403
|
lhop |
|- ( T. -> 1 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) / ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) ) ) limCC 0 ) ) |
405 |
404
|
mptru |
|- 1 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) / ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) ) ) limCC 0 ) |
406 |
|
eqidd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ) |
407 |
|
simpr |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> x = s ) |
408 |
406 407 390 307
|
fvmptd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) = s ) |
409 |
|
eqidd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) = ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ) |
410 |
407
|
oveq1d |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> ( x / 2 ) = ( s / 2 ) ) |
411 |
410
|
fveq2d |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> ( sin ` ( x / 2 ) ) = ( sin ` ( s / 2 ) ) ) |
412 |
411
|
oveq2d |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) /\ x = s ) -> ( 2 x. ( sin ` ( x / 2 ) ) ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
413 |
26
|
a1i |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> 2 e. RR ) |
414 |
311
|
resincld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( sin ` ( s / 2 ) ) e. RR ) |
415 |
413 414
|
remulcld |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
416 |
409 412 390 415
|
fvmptd |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) = ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
417 |
408 416
|
oveq12d |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) / ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
418 |
417
|
mpteq2ia |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) / ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
419 |
418
|
oveq1i |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> x ) ` s ) / ( ( x e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( x / 2 ) ) ) ) ` s ) ) ) limCC 0 ) = ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC 0 ) |
420 |
405 419
|
eleqtri |
|- 1 e. ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC 0 ) |
421 |
10
|
oveq1i |
|- ( K limCC 0 ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) |
422 |
10
|
feq1i |
|- ( K : ( -u _pi [,] _pi ) --> CC <-> ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) : ( -u _pi [,] _pi ) --> CC ) |
423 |
14 422
|
mpbi |
|- ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) : ( -u _pi [,] _pi ) --> CC |
424 |
423
|
a1i |
|- ( T. -> ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) : ( -u _pi [,] _pi ) --> CC ) |
425 |
243
|
a1i |
|- ( T. -> ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) ) |
426 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
427 |
39 38 426
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
428 |
427
|
a1i |
|- ( T. -> ( -u _pi [,] _pi ) C_ RR ) |
429 |
428 12
|
sstrdi |
|- ( T. -> ( -u _pi [,] _pi ) C_ CC ) |
430 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) |
431 |
39 35 36
|
ltleii |
|- -u _pi <_ 0 |
432 |
35 38 37
|
ltleii |
|- 0 <_ _pi |
433 |
39 38
|
elicc2i |
|- ( 0 e. ( -u _pi [,] _pi ) <-> ( 0 e. RR /\ -u _pi <_ 0 /\ 0 <_ _pi ) ) |
434 |
35 431 432 433
|
mpbir3an |
|- 0 e. ( -u _pi [,] _pi ) |
435 |
159
|
snss |
|- ( 0 e. ( -u _pi [,] _pi ) <-> { 0 } C_ ( -u _pi [,] _pi ) ) |
436 |
434 435
|
mpbi |
|- { 0 } C_ ( -u _pi [,] _pi ) |
437 |
|
ssequn2 |
|- ( { 0 } C_ ( -u _pi [,] _pi ) <-> ( ( -u _pi [,] _pi ) u. { 0 } ) = ( -u _pi [,] _pi ) ) |
438 |
436 437
|
mpbi |
|- ( ( -u _pi [,] _pi ) u. { 0 } ) = ( -u _pi [,] _pi ) |
439 |
438
|
oveq2i |
|- ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) |
440 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
441 |
56 440
|
rerest |
|- ( ( -u _pi [,] _pi ) C_ RR -> ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) = ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) |
442 |
427 441
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) = ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |
443 |
439 442
|
eqtri |
|- ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) = ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |
444 |
443
|
fveq2i |
|- ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) ) = ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) |
445 |
159
|
snss |
|- ( 0 e. ( -u _pi (,) _pi ) <-> { 0 } C_ ( -u _pi (,) _pi ) ) |
446 |
44 445
|
mpbi |
|- { 0 } C_ ( -u _pi (,) _pi ) |
447 |
|
ssequn2 |
|- ( { 0 } C_ ( -u _pi (,) _pi ) <-> ( ( -u _pi (,) _pi ) u. { 0 } ) = ( -u _pi (,) _pi ) ) |
448 |
446 447
|
mpbi |
|- ( ( -u _pi (,) _pi ) u. { 0 } ) = ( -u _pi (,) _pi ) |
449 |
444 448
|
fveq12i |
|- ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) ) ` ( ( -u _pi (,) _pi ) u. { 0 } ) ) = ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( -u _pi (,) _pi ) ) |
450 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( -u _pi [,] _pi ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. ( TopOn ` ( -u _pi [,] _pi ) ) ) |
451 |
60 427 450
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. ( TopOn ` ( -u _pi [,] _pi ) ) |
452 |
451
|
topontopi |
|- ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. Top |
453 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
454 |
|
ovex |
|- ( -u _pi [,] _pi ) e. _V |
455 |
453 454
|
pm3.2i |
|- ( ( topGen ` ran (,) ) e. Top /\ ( -u _pi [,] _pi ) e. _V ) |
456 |
|
ssid |
|- ( -u _pi (,) _pi ) C_ ( -u _pi (,) _pi ) |
457 |
33 243 456
|
3pm3.2i |
|- ( ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) /\ ( -u _pi (,) _pi ) C_ ( -u _pi (,) _pi ) ) |
458 |
|
restopnb |
|- ( ( ( ( topGen ` ran (,) ) e. Top /\ ( -u _pi [,] _pi ) e. _V ) /\ ( ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) /\ ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) /\ ( -u _pi (,) _pi ) C_ ( -u _pi (,) _pi ) ) ) -> ( ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ) |
459 |
455 457 458
|
mp2an |
|- ( ( -u _pi (,) _pi ) e. ( topGen ` ran (,) ) <-> ( -u _pi (,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) |
460 |
33 459
|
mpbi |
|- ( -u _pi (,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |
461 |
|
isopn3i |
|- ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. Top /\ ( -u _pi (,) _pi ) e. ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) ) |
462 |
452 460 461
|
mp2an |
|- ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( -u _pi (,) _pi ) ) = ( -u _pi (,) _pi ) |
463 |
|
eqid |
|- ( -u _pi (,) _pi ) = ( -u _pi (,) _pi ) |
464 |
449 462 463
|
3eqtrri |
|- ( -u _pi (,) _pi ) = ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) ) ` ( ( -u _pi (,) _pi ) u. { 0 } ) ) |
465 |
44 464
|
eleqtri |
|- 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) ) ` ( ( -u _pi (,) _pi ) u. { 0 } ) ) |
466 |
465
|
a1i |
|- ( T. -> 0 e. ( ( int ` ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) u. { 0 } ) ) ) ` ( ( -u _pi (,) _pi ) u. { 0 } ) ) ) |
467 |
424 425 429 56 430 466
|
limcres |
|- ( T. -> ( ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) limCC 0 ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) ) |
468 |
467
|
mptru |
|- ( ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) limCC 0 ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) |
469 |
468
|
eqcomi |
|- ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) = ( ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) limCC 0 ) |
470 |
|
resmpt |
|- ( ( -u _pi (,) _pi ) C_ ( -u _pi [,] _pi ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) = ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
471 |
243 470
|
ax-mp |
|- ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) = ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
472 |
471
|
oveq1i |
|- ( ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( -u _pi (,) _pi ) ) limCC 0 ) = ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) |
473 |
421 469 472
|
3eqtri |
|- ( K limCC 0 ) = ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) |
474 |
|
eqid |
|- ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
475 |
|
iftrue |
|- ( s = 0 -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = 1 ) |
476 |
|
1cnd |
|- ( s = 0 -> 1 e. CC ) |
477 |
475 476
|
eqeltrd |
|- ( s = 0 -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. CC ) |
478 |
477
|
adantl |
|- ( ( s e. ( -u _pi (,) _pi ) /\ s = 0 ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. CC ) |
479 |
|
iffalse |
|- ( -. s = 0 -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
480 |
479
|
adantl |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
481 |
141
|
adantr |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> s e. CC ) |
482 |
|
2cnd |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> 2 e. CC ) |
483 |
481
|
halfcld |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( s / 2 ) e. CC ) |
484 |
483
|
sincld |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( sin ` ( s / 2 ) ) e. CC ) |
485 |
482 484
|
mulcld |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
486 |
81
|
a1i |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> 2 =/= 0 ) |
487 |
243
|
sseli |
|- ( s e. ( -u _pi (,) _pi ) -> s e. ( -u _pi [,] _pi ) ) |
488 |
|
neqne |
|- ( -. s = 0 -> s =/= 0 ) |
489 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
490 |
487 488 489
|
syl2an |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
491 |
482 484 486 490
|
mulne0d |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
492 |
481 485 491
|
divcld |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC ) |
493 |
480 492
|
eqeltrd |
|- ( ( s e. ( -u _pi (,) _pi ) /\ -. s = 0 ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. CC ) |
494 |
478 493
|
pm2.61dan |
|- ( s e. ( -u _pi (,) _pi ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. CC ) |
495 |
474 494
|
fmpti |
|- ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) : ( -u _pi (,) _pi ) --> CC |
496 |
495
|
a1i |
|- ( T. -> ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) : ( -u _pi (,) _pi ) --> CC ) |
497 |
496
|
limcdif |
|- ( T. -> ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) = ( ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) ) |
498 |
497
|
mptru |
|- ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC 0 ) = ( ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) |
499 |
|
resmpt |
|- ( ( ( -u _pi (,) _pi ) \ { 0 } ) C_ ( -u _pi (,) _pi ) -> ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
500 |
16 499
|
ax-mp |
|- ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
501 |
|
eldifn |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. s e. { 0 } ) |
502 |
|
velsn |
|- ( s e. { 0 } <-> s = 0 ) |
503 |
501 502
|
sylnib |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> -. s = 0 ) |
504 |
503 479
|
syl |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
505 |
504
|
mpteq2ia |
|- ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
506 |
500 505
|
eqtri |
|- ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
507 |
506
|
oveq1i |
|- ( ( ( s e. ( -u _pi (,) _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi (,) _pi ) \ { 0 } ) ) limCC 0 ) = ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC 0 ) |
508 |
473 498 507
|
3eqtrri |
|- ( ( s e. ( ( -u _pi (,) _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC 0 ) = ( K limCC 0 ) |
509 |
420 508
|
eleqtri |
|- 1 e. ( K limCC 0 ) |
510 |
509
|
a1i |
|- ( s = 0 -> 1 e. ( K limCC 0 ) ) |
511 |
|
fveq2 |
|- ( s = 0 -> ( K ` s ) = ( K ` 0 ) ) |
512 |
475 10 47
|
fvmpt |
|- ( 0 e. ( -u _pi [,] _pi ) -> ( K ` 0 ) = 1 ) |
513 |
434 512
|
ax-mp |
|- ( K ` 0 ) = 1 |
514 |
511 513
|
eqtrdi |
|- ( s = 0 -> ( K ` s ) = 1 ) |
515 |
|
oveq2 |
|- ( s = 0 -> ( K limCC s ) = ( K limCC 0 ) ) |
516 |
510 514 515
|
3eltr4d |
|- ( s = 0 -> ( K ` s ) e. ( K limCC s ) ) |
517 |
427 12
|
sstri |
|- ( -u _pi [,] _pi ) C_ CC |
518 |
517
|
a1i |
|- ( s = 0 -> ( -u _pi [,] _pi ) C_ CC ) |
519 |
38
|
a1i |
|- ( s = 0 -> _pi e. RR ) |
520 |
519
|
renegcld |
|- ( s = 0 -> -u _pi e. RR ) |
521 |
|
id |
|- ( s = 0 -> s = 0 ) |
522 |
35
|
a1i |
|- ( s = 0 -> 0 e. RR ) |
523 |
521 522
|
eqeltrd |
|- ( s = 0 -> s e. RR ) |
524 |
431 521
|
breqtrrid |
|- ( s = 0 -> -u _pi <_ s ) |
525 |
521 432
|
eqbrtrdi |
|- ( s = 0 -> s <_ _pi ) |
526 |
520 519 523 524 525
|
eliccd |
|- ( s = 0 -> s e. ( -u _pi [,] _pi ) ) |
527 |
57
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -u _pi [,] _pi ) ) |
528 |
56
|
cnfldtop |
|- ( TopOpen ` CCfld ) e. Top |
529 |
|
reex |
|- RR e. _V |
530 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( -u _pi [,] _pi ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -u _pi [,] _pi ) ) = ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) ) |
531 |
528 427 529 530
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( -u _pi [,] _pi ) ) = ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) |
532 |
527 531
|
eqtri |
|- ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) = ( ( TopOpen ` CCfld ) |`t ( -u _pi [,] _pi ) ) |
533 |
56 532
|
cnplimc |
|- ( ( ( -u _pi [,] _pi ) C_ CC /\ s e. ( -u _pi [,] _pi ) ) -> ( K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) <-> ( K : ( -u _pi [,] _pi ) --> CC /\ ( K ` s ) e. ( K limCC s ) ) ) ) |
534 |
518 526 533
|
syl2anc |
|- ( s = 0 -> ( K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) <-> ( K : ( -u _pi [,] _pi ) --> CC /\ ( K ` s ) e. ( K limCC s ) ) ) ) |
535 |
15 516 534
|
mpbir2and |
|- ( s = 0 -> K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
536 |
535
|
adantl |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s = 0 ) -> K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
537 |
|
simpl |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( -u _pi [,] _pi ) ) |
538 |
502
|
notbii |
|- ( -. s e. { 0 } <-> -. s = 0 ) |
539 |
538
|
biimpri |
|- ( -. s = 0 -> -. s e. { 0 } ) |
540 |
539
|
adantl |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> -. s e. { 0 } ) |
541 |
537 540
|
eldifd |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
542 |
|
fveq2 |
|- ( x = s -> ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) = ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
543 |
542
|
eleq2d |
|- ( x = s -> ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) <-> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) ) |
544 |
429
|
ssdifssd |
|- ( T. -> ( ( -u _pi [,] _pi ) \ { 0 } ) C_ CC ) |
545 |
544 145
|
idcncfg |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> s ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
546 |
|
eqid |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
547 |
|
2cnd |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> 2 e. CC ) |
548 |
|
eldifi |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s e. ( -u _pi [,] _pi ) ) |
549 |
517 548
|
sselid |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s e. CC ) |
550 |
549
|
halfcld |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( s / 2 ) e. CC ) |
551 |
550
|
sincld |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( sin ` ( s / 2 ) ) e. CC ) |
552 |
547 551
|
mulcld |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
553 |
81
|
a1i |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> 2 =/= 0 ) |
554 |
|
eldifsni |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s =/= 0 ) |
555 |
548 554 489
|
syl2anc |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
556 |
547 551 553 555
|
mulne0d |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
557 |
556
|
neneqd |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> -. ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) |
558 |
|
elsng |
|- ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } <-> ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) ) |
559 |
552 558
|
syl |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } <-> ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) ) |
560 |
557 559
|
mtbird |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> -. ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } ) |
561 |
552 560
|
eldifd |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. ( CC \ { 0 } ) ) |
562 |
546 561
|
fmpti |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> ( CC \ { 0 } ) |
563 |
|
difss |
|- ( CC \ { 0 } ) C_ CC |
564 |
|
eqid |
|- ( s e. CC |-> 2 ) = ( s e. CC |-> 2 ) |
565 |
175 176 175
|
constcncfg |
|- ( 2 e. CC -> ( s e. CC |-> 2 ) e. ( CC -cn-> CC ) ) |
566 |
102 565
|
mp1i |
|- ( T. -> ( s e. CC |-> 2 ) e. ( CC -cn-> CC ) ) |
567 |
|
2cnd |
|- ( ( T. /\ s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) -> 2 e. CC ) |
568 |
564 566 544 145 567
|
cncfmptssg |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> 2 ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
569 |
549 547 553
|
divrecd |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( s / 2 ) = ( s x. ( 1 / 2 ) ) ) |
570 |
569
|
mpteq2ia |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / 2 ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s x. ( 1 / 2 ) ) ) |
571 |
|
eqid |
|- ( s e. CC |-> ( 1 / 2 ) ) = ( s e. CC |-> ( 1 / 2 ) ) |
572 |
144
|
a1i |
|- ( ( 1 / 2 ) e. CC -> CC C_ CC ) |
573 |
|
id |
|- ( ( 1 / 2 ) e. CC -> ( 1 / 2 ) e. CC ) |
574 |
572 573 572
|
constcncfg |
|- ( ( 1 / 2 ) e. CC -> ( s e. CC |-> ( 1 / 2 ) ) e. ( CC -cn-> CC ) ) |
575 |
94 574
|
mp1i |
|- ( T. -> ( s e. CC |-> ( 1 / 2 ) ) e. ( CC -cn-> CC ) ) |
576 |
94
|
a1i |
|- ( ( T. /\ s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) -> ( 1 / 2 ) e. CC ) |
577 |
571 575 544 145 576
|
cncfmptssg |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 1 / 2 ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
578 |
545 577
|
mulcncf |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s x. ( 1 / 2 ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
579 |
570 578
|
eqeltrid |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / 2 ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
580 |
182 579
|
cncfmpt1f |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( sin ` ( s / 2 ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
581 |
568 580
|
mulcncf |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
582 |
581
|
mptru |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) |
583 |
|
cncffvrn |
|- ( ( ( CC \ { 0 } ) C_ CC /\ ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) -> ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> ( CC \ { 0 } ) ) <-> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> ( CC \ { 0 } ) ) ) |
584 |
563 582 583
|
mp2an |
|- ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> ( CC \ { 0 } ) ) <-> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> ( CC \ { 0 } ) ) |
585 |
562 584
|
mpbir |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> ( CC \ { 0 } ) ) |
586 |
585
|
a1i |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> ( CC \ { 0 } ) ) ) |
587 |
545 586
|
divcncf |
|- ( T. -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) ) |
588 |
587
|
mptru |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) |
589 |
428
|
ssdifssd |
|- ( T. -> ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR ) |
590 |
589
|
mptru |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR |
591 |
590 12
|
sstri |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ CC |
592 |
57
|
oveq1i |
|- ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
593 |
|
restabs |
|- ( ( ( TopOpen ` CCfld ) e. Top /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR /\ RR e. _V ) -> ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) ) |
594 |
528 590 529 593
|
mp3an |
|- ( ( ( TopOpen ` CCfld ) |`t RR ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
595 |
592 594
|
eqtri |
|- ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
596 |
|
unicntop |
|- CC = U. ( TopOpen ` CCfld ) |
597 |
596
|
restid |
|- ( ( TopOpen ` CCfld ) e. Top -> ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) ) |
598 |
528 597
|
ax-mp |
|- ( ( TopOpen ` CCfld ) |`t CC ) = ( TopOpen ` CCfld ) |
599 |
598
|
eqcomi |
|- ( TopOpen ` CCfld ) = ( ( TopOpen ` CCfld ) |`t CC ) |
600 |
56 595 599
|
cncfcn |
|- ( ( ( ( -u _pi [,] _pi ) \ { 0 } ) C_ CC /\ CC C_ CC ) -> ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) ) |
601 |
591 144 600
|
mp2an |
|- ( ( ( -u _pi [,] _pi ) \ { 0 } ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) |
602 |
588 601
|
eleqtri |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) |
603 |
|
resttopon |
|- ( ( ( topGen ` ran (,) ) e. ( TopOn ` RR ) /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ RR ) -> ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( TopOn ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) ) |
604 |
60 590 603
|
mp2an |
|- ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( TopOn ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
605 |
56
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
606 |
|
cncnp |
|- ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( TopOn ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> CC /\ A. x e. ( ( -u _pi [,] _pi ) \ { 0 } ) ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) ) |
607 |
604 605 606
|
mp2an |
|- ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) Cn ( TopOpen ` CCfld ) ) <-> ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> CC /\ A. x e. ( ( -u _pi [,] _pi ) \ { 0 } ) ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) ) |
608 |
602 607
|
mpbi |
|- ( ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) : ( ( -u _pi [,] _pi ) \ { 0 } ) --> CC /\ A. x e. ( ( -u _pi [,] _pi ) \ { 0 } ) ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) ) |
609 |
608
|
simpri |
|- A. x e. ( ( -u _pi [,] _pi ) \ { 0 } ) ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` x ) |
610 |
543 609
|
vtoclri |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
611 |
541 610
|
syl |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
612 |
10
|
reseq1i |
|- ( K |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
613 |
|
difss |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) |
614 |
|
resmpt |
|- ( ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
615 |
613 614
|
ax-mp |
|- ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
616 |
|
eldifn |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> -. s e. { 0 } ) |
617 |
616 502
|
sylnib |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> -. s = 0 ) |
618 |
617 479
|
syl |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
619 |
618
|
mpteq2ia |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
620 |
612 615 619
|
3eqtri |
|- ( K |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
621 |
|
restabs |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) /\ ( -u _pi [,] _pi ) e. _V ) -> ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) ) |
622 |
453 613 454 621
|
mp3an |
|- ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
623 |
622
|
oveq1i |
|- ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) = ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) |
624 |
623
|
fveq1i |
|- ( ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) = ( ( ( ( topGen ` ran (,) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) |
625 |
611 620 624
|
3eltr4g |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( K |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
626 |
452 613
|
pm3.2i |
|- ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. Top /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) ) |
627 |
626
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. Top /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) ) ) |
628 |
|
ssdif |
|- ( ( -u _pi [,] _pi ) C_ RR -> ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( RR \ { 0 } ) ) |
629 |
427 628
|
ax-mp |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( RR \ { 0 } ) |
630 |
629 541
|
sselid |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( RR \ { 0 } ) ) |
631 |
|
sscon |
|- ( { 0 } C_ ( -u _pi [,] _pi ) -> ( RR \ ( -u _pi [,] _pi ) ) C_ ( RR \ { 0 } ) ) |
632 |
436 631
|
ax-mp |
|- ( RR \ ( -u _pi [,] _pi ) ) C_ ( RR \ { 0 } ) |
633 |
629 632
|
unssi |
|- ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) C_ ( RR \ { 0 } ) |
634 |
|
simpr |
|- ( ( s e. ( RR \ { 0 } ) /\ s e. ( -u _pi [,] _pi ) ) -> s e. ( -u _pi [,] _pi ) ) |
635 |
|
eldifn |
|- ( s e. ( RR \ { 0 } ) -> -. s e. { 0 } ) |
636 |
635
|
adantr |
|- ( ( s e. ( RR \ { 0 } ) /\ s e. ( -u _pi [,] _pi ) ) -> -. s e. { 0 } ) |
637 |
634 636
|
eldifd |
|- ( ( s e. ( RR \ { 0 } ) /\ s e. ( -u _pi [,] _pi ) ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
638 |
|
elun1 |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) |
639 |
637 638
|
syl |
|- ( ( s e. ( RR \ { 0 } ) /\ s e. ( -u _pi [,] _pi ) ) -> s e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) |
640 |
|
eldifi |
|- ( s e. ( RR \ { 0 } ) -> s e. RR ) |
641 |
640
|
adantr |
|- ( ( s e. ( RR \ { 0 } ) /\ -. s e. ( -u _pi [,] _pi ) ) -> s e. RR ) |
642 |
|
simpr |
|- ( ( s e. ( RR \ { 0 } ) /\ -. s e. ( -u _pi [,] _pi ) ) -> -. s e. ( -u _pi [,] _pi ) ) |
643 |
641 642
|
eldifd |
|- ( ( s e. ( RR \ { 0 } ) /\ -. s e. ( -u _pi [,] _pi ) ) -> s e. ( RR \ ( -u _pi [,] _pi ) ) ) |
644 |
|
elun2 |
|- ( s e. ( RR \ ( -u _pi [,] _pi ) ) -> s e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) |
645 |
643 644
|
syl |
|- ( ( s e. ( RR \ { 0 } ) /\ -. s e. ( -u _pi [,] _pi ) ) -> s e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) |
646 |
639 645
|
pm2.61dan |
|- ( s e. ( RR \ { 0 } ) -> s e. ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) |
647 |
646
|
ssriv |
|- ( RR \ { 0 } ) C_ ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) |
648 |
633 647
|
eqssi |
|- ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) = ( RR \ { 0 } ) |
649 |
648
|
fveq2i |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) = ( ( int ` ( topGen ` ran (,) ) ) ` ( RR \ { 0 } ) ) |
650 |
61
|
cldopn |
|- ( { 0 } e. ( Clsd ` ( topGen ` ran (,) ) ) -> ( RR \ { 0 } ) e. ( topGen ` ran (,) ) ) |
651 |
59 650
|
ax-mp |
|- ( RR \ { 0 } ) e. ( topGen ` ran (,) ) |
652 |
|
isopn3i |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( RR \ { 0 } ) e. ( topGen ` ran (,) ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( RR \ { 0 } ) ) = ( RR \ { 0 } ) ) |
653 |
453 651 652
|
mp2an |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( RR \ { 0 } ) ) = ( RR \ { 0 } ) |
654 |
649 653
|
eqtri |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) = ( RR \ { 0 } ) |
655 |
630 654
|
eleqtrrdi |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) ) |
656 |
655 537
|
elind |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
657 |
|
eqid |
|- ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) = ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |
658 |
61 657
|
restntr |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( -u _pi [,] _pi ) C_ RR /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) ) -> ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) i^i ( -u _pi [,] _pi ) ) ) |
659 |
453 427 613 658
|
mp3an |
|- ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) = ( ( ( int ` ( topGen ` ran (,) ) ) ` ( ( ( -u _pi [,] _pi ) \ { 0 } ) u. ( RR \ ( -u _pi [,] _pi ) ) ) ) i^i ( -u _pi [,] _pi ) ) |
660 |
656 659
|
eleqtrrdi |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> s e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) ) |
661 |
14
|
a1i |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> K : ( -u _pi [,] _pi ) --> CC ) |
662 |
451
|
toponunii |
|- ( -u _pi [,] _pi ) = U. ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |
663 |
662 596
|
cnprest |
|- ( ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. Top /\ ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) ) /\ ( s e. ( ( int ` ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) ) ` ( ( -u _pi [,] _pi ) \ { 0 } ) ) /\ K : ( -u _pi [,] _pi ) --> CC ) ) -> ( K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) <-> ( K |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) ) |
664 |
627 660 661 663
|
syl12anc |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> ( K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) <-> ( K |` ( ( -u _pi [,] _pi ) \ { 0 } ) ) e. ( ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) |`t ( ( -u _pi [,] _pi ) \ { 0 } ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) ) |
665 |
625 664
|
mpbird |
|- ( ( s e. ( -u _pi [,] _pi ) /\ -. s = 0 ) -> K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
666 |
536 665
|
pm2.61dan |
|- ( s e. ( -u _pi [,] _pi ) -> K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) |
667 |
666
|
rgen |
|- A. s e. ( -u _pi [,] _pi ) K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) |
668 |
|
cncnp |
|- ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) e. ( TopOn ` ( -u _pi [,] _pi ) ) /\ ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) -> ( K e. ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) <-> ( K : ( -u _pi [,] _pi ) --> CC /\ A. s e. ( -u _pi [,] _pi ) K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) ) ) |
669 |
451 605 668
|
mp2an |
|- ( K e. ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) <-> ( K : ( -u _pi [,] _pi ) --> CC /\ A. s e. ( -u _pi [,] _pi ) K e. ( ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) CnP ( TopOpen ` CCfld ) ) ` s ) ) ) |
670 |
14 667 669
|
mpbir2an |
|- K e. ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) |
671 |
56 532 599
|
cncfcn |
|- ( ( ( -u _pi [,] _pi ) C_ CC /\ CC C_ CC ) -> ( ( -u _pi [,] _pi ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) ) |
672 |
517 144 671
|
mp2an |
|- ( ( -u _pi [,] _pi ) -cn-> CC ) = ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) |
673 |
672
|
eqcomi |
|- ( ( ( topGen ` ran (,) ) |`t ( -u _pi [,] _pi ) ) Cn ( TopOpen ` CCfld ) ) = ( ( -u _pi [,] _pi ) -cn-> CC ) |
674 |
670 673
|
eleqtri |
|- K e. ( ( -u _pi [,] _pi ) -cn-> CC ) |
675 |
|
cncffvrn |
|- ( ( RR C_ CC /\ K e. ( ( -u _pi [,] _pi ) -cn-> CC ) ) -> ( K e. ( ( -u _pi [,] _pi ) -cn-> RR ) <-> K : ( -u _pi [,] _pi ) --> RR ) ) |
676 |
12 674 675
|
mp2an |
|- ( K e. ( ( -u _pi [,] _pi ) -cn-> RR ) <-> K : ( -u _pi [,] _pi ) --> RR ) |
677 |
11 676
|
mpbir |
|- K e. ( ( -u _pi [,] _pi ) -cn-> RR ) |