Metamath Proof Explorer


Theorem fourierdlem66

Description: Value of the G function when the argument is not zero. (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Hypotheses fourierdlem66.f
|- ( ph -> F : RR --> RR )
fourierdlem66.x
|- ( ph -> X e. RR )
fourierdlem66.y
|- ( ph -> Y e. RR )
fourierdlem66.w
|- ( ph -> W e. RR )
fourierdlem66.d
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) )
fourierdlem66.h
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) )
fourierdlem66.k
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
fourierdlem66.u
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) )
fourierdlem66.s
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) )
fourierdlem66.g
|- G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) )
fourierdlem66.a
|- A = ( ( -u _pi [,] _pi ) \ { 0 } )
Assertion fourierdlem66
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) )

Proof

Step Hyp Ref Expression
1 fourierdlem66.f
 |-  ( ph -> F : RR --> RR )
2 fourierdlem66.x
 |-  ( ph -> X e. RR )
3 fourierdlem66.y
 |-  ( ph -> Y e. RR )
4 fourierdlem66.w
 |-  ( ph -> W e. RR )
5 fourierdlem66.d
 |-  D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) )
6 fourierdlem66.h
 |-  H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) )
7 fourierdlem66.k
 |-  K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
8 fourierdlem66.u
 |-  U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) )
9 fourierdlem66.s
 |-  S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) )
10 fourierdlem66.g
 |-  G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) )
11 fourierdlem66.a
 |-  A = ( ( -u _pi [,] _pi ) \ { 0 } )
12 11 eqimssi
 |-  A C_ ( ( -u _pi [,] _pi ) \ { 0 } )
13 difss
 |-  ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi )
14 12 13 sstri
 |-  A C_ ( -u _pi [,] _pi )
15 14 a1i
 |-  ( ph -> A C_ ( -u _pi [,] _pi ) )
16 15 sselda
 |-  ( ( ph /\ s e. A ) -> s e. ( -u _pi [,] _pi ) )
17 16 adantlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( -u _pi [,] _pi ) )
18 1 adantr
 |-  ( ( ph /\ n e. NN ) -> F : RR --> RR )
19 2 adantr
 |-  ( ( ph /\ n e. NN ) -> X e. RR )
20 3 adantr
 |-  ( ( ph /\ n e. NN ) -> Y e. RR )
21 4 adantr
 |-  ( ( ph /\ n e. NN ) -> W e. RR )
22 18 19 20 21 6 7 8 fourierdlem55
 |-  ( ( ph /\ n e. NN ) -> U : ( -u _pi [,] _pi ) --> RR )
23 22 adantr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> U : ( -u _pi [,] _pi ) --> RR )
24 23 17 ffvelrnd
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( U ` s ) e. RR )
25 nnre
 |-  ( n e. NN -> n e. RR )
26 9 fourierdlem5
 |-  ( n e. RR -> S : ( -u _pi [,] _pi ) --> RR )
27 25 26 syl
 |-  ( n e. NN -> S : ( -u _pi [,] _pi ) --> RR )
28 27 ad2antlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> S : ( -u _pi [,] _pi ) --> RR )
29 28 17 ffvelrnd
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( S ` s ) e. RR )
30 24 29 remulcld
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( U ` s ) x. ( S ` s ) ) e. RR )
31 10 fvmpt2
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ ( ( U ` s ) x. ( S ` s ) ) e. RR ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) )
32 17 30 31 syl2anc
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) )
33 1 2 3 4 6 fourierdlem9
 |-  ( ph -> H : ( -u _pi [,] _pi ) --> RR )
34 33 adantr
 |-  ( ( ph /\ s e. A ) -> H : ( -u _pi [,] _pi ) --> RR )
35 34 16 ffvelrnd
 |-  ( ( ph /\ s e. A ) -> ( H ` s ) e. RR )
36 7 fourierdlem43
 |-  K : ( -u _pi [,] _pi ) --> RR
37 36 a1i
 |-  ( ( ph /\ s e. A ) -> K : ( -u _pi [,] _pi ) --> RR )
38 37 16 ffvelrnd
 |-  ( ( ph /\ s e. A ) -> ( K ` s ) e. RR )
39 35 38 remulcld
 |-  ( ( ph /\ s e. A ) -> ( ( H ` s ) x. ( K ` s ) ) e. RR )
40 8 fvmpt2
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ ( ( H ` s ) x. ( K ` s ) ) e. RR ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) )
41 16 39 40 syl2anc
 |-  ( ( ph /\ s e. A ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) )
42 0red
 |-  ( ( ph /\ s e. A ) -> 0 e. RR )
43 1 adantr
 |-  ( ( ph /\ s e. A ) -> F : RR --> RR )
44 2 adantr
 |-  ( ( ph /\ s e. A ) -> X e. RR )
45 pire
 |-  _pi e. RR
46 45 renegcli
 |-  -u _pi e. RR
47 iccssre
 |-  ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR )
48 46 45 47 mp2an
 |-  ( -u _pi [,] _pi ) C_ RR
49 14 sseli
 |-  ( s e. A -> s e. ( -u _pi [,] _pi ) )
50 48 49 sselid
 |-  ( s e. A -> s e. RR )
51 50 adantl
 |-  ( ( ph /\ s e. A ) -> s e. RR )
52 44 51 readdcld
 |-  ( ( ph /\ s e. A ) -> ( X + s ) e. RR )
53 43 52 ffvelrnd
 |-  ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. RR )
54 3 4 ifcld
 |-  ( ph -> if ( 0 < s , Y , W ) e. RR )
55 54 adantr
 |-  ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. RR )
56 53 55 resubcld
 |-  ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR )
57 simpr
 |-  ( ( ph /\ s e. A ) -> s e. A )
58 12 57 sselid
 |-  ( ( ph /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) )
59 58 eldifbd
 |-  ( ( ph /\ s e. A ) -> -. s e. { 0 } )
60 velsn
 |-  ( s e. { 0 } <-> s = 0 )
61 59 60 sylnib
 |-  ( ( ph /\ s e. A ) -> -. s = 0 )
62 61 neqned
 |-  ( ( ph /\ s e. A ) -> s =/= 0 )
63 56 51 62 redivcld
 |-  ( ( ph /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) e. RR )
64 42 63 ifcld
 |-  ( ( ph /\ s e. A ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. RR )
65 6 fvmpt2
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. RR ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) )
66 16 64 65 syl2anc
 |-  ( ( ph /\ s e. A ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) )
67 61 iffalsed
 |-  ( ( ph /\ s e. A ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) )
68 66 67 eqtrd
 |-  ( ( ph /\ s e. A ) -> ( H ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) )
69 1red
 |-  ( ( ph /\ s e. A ) -> 1 e. RR )
70 2re
 |-  2 e. RR
71 70 a1i
 |-  ( ( ph /\ s e. A ) -> 2 e. RR )
72 51 rehalfcld
 |-  ( ( ph /\ s e. A ) -> ( s / 2 ) e. RR )
73 72 resincld
 |-  ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. RR )
74 71 73 remulcld
 |-  ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR )
75 2cnd
 |-  ( ( ph /\ s e. A ) -> 2 e. CC )
76 73 recnd
 |-  ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. CC )
77 2ne0
 |-  2 =/= 0
78 77 a1i
 |-  ( ( ph /\ s e. A ) -> 2 =/= 0 )
79 fourierdlem44
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 )
80 16 62 79 syl2anc
 |-  ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) =/= 0 )
81 75 76 78 80 mulne0d
 |-  ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 )
82 51 74 81 redivcld
 |-  ( ( ph /\ s e. A ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR )
83 69 82 ifcld
 |-  ( ( ph /\ s e. A ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. RR )
84 7 fvmpt2
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. RR ) -> ( K ` s ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
85 16 83 84 syl2anc
 |-  ( ( ph /\ s e. A ) -> ( K ` s ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
86 61 iffalsed
 |-  ( ( ph /\ s e. A ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
87 85 86 eqtrd
 |-  ( ( ph /\ s e. A ) -> ( K ` s ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
88 68 87 oveq12d
 |-  ( ( ph /\ s e. A ) -> ( ( H ` s ) x. ( K ` s ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
89 56 recnd
 |-  ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC )
90 51 recnd
 |-  ( ( ph /\ s e. A ) -> s e. CC )
91 75 76 mulcld
 |-  ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC )
92 89 90 91 62 81 dmdcan2d
 |-  ( ( ph /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
93 41 88 92 3eqtrd
 |-  ( ( ph /\ s e. A ) -> ( U ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
94 93 adantlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( U ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
95 25 ad2antlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> n e. RR )
96 1red
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> 1 e. RR )
97 96 rehalfcld
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 1 / 2 ) e. RR )
98 95 97 readdcld
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( n + ( 1 / 2 ) ) e. RR )
99 50 adantl
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. RR )
100 98 99 remulcld
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( n + ( 1 / 2 ) ) x. s ) e. RR )
101 100 resincld
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR )
102 9 fvmpt2
 |-  ( ( s e. ( -u _pi [,] _pi ) /\ ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR ) -> ( S ` s ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) )
103 17 101 102 syl2anc
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( S ` s ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) )
104 94 103 oveq12d
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( U ` s ) x. ( S ` s ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) )
105 89 adantlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC )
106 91 adantlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC )
107 101 recnd
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. CC )
108 81 adantlr
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 )
109 105 106 107 108 div32d
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) )
110 25 adantr
 |-  ( ( n e. NN /\ s e. A ) -> n e. RR )
111 halfre
 |-  ( 1 / 2 ) e. RR
112 111 a1i
 |-  ( ( n e. NN /\ s e. A ) -> ( 1 / 2 ) e. RR )
113 110 112 readdcld
 |-  ( ( n e. NN /\ s e. A ) -> ( n + ( 1 / 2 ) ) e. RR )
114 50 adantl
 |-  ( ( n e. NN /\ s e. A ) -> s e. RR )
115 113 114 remulcld
 |-  ( ( n e. NN /\ s e. A ) -> ( ( n + ( 1 / 2 ) ) x. s ) e. RR )
116 115 resincld
 |-  ( ( n e. NN /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR )
117 116 recnd
 |-  ( ( n e. NN /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. CC )
118 70 a1i
 |-  ( ( n e. NN /\ s e. A ) -> 2 e. RR )
119 114 rehalfcld
 |-  ( ( n e. NN /\ s e. A ) -> ( s / 2 ) e. RR )
120 119 resincld
 |-  ( ( n e. NN /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. RR )
121 118 120 remulcld
 |-  ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR )
122 121 recnd
 |-  ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC )
123 picn
 |-  _pi e. CC
124 123 a1i
 |-  ( ( n e. NN /\ s e. A ) -> _pi e. CC )
125 2cnd
 |-  ( s e. A -> 2 e. CC )
126 rehalfcl
 |-  ( s e. RR -> ( s / 2 ) e. RR )
127 resincl
 |-  ( ( s / 2 ) e. RR -> ( sin ` ( s / 2 ) ) e. RR )
128 50 126 127 3syl
 |-  ( s e. A -> ( sin ` ( s / 2 ) ) e. RR )
129 128 recnd
 |-  ( s e. A -> ( sin ` ( s / 2 ) ) e. CC )
130 77 a1i
 |-  ( s e. A -> 2 =/= 0 )
131 eldifsni
 |-  ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s =/= 0 )
132 131 11 eleq2s
 |-  ( s e. A -> s =/= 0 )
133 49 132 79 syl2anc
 |-  ( s e. A -> ( sin ` ( s / 2 ) ) =/= 0 )
134 125 129 130 133 mulne0d
 |-  ( s e. A -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 )
135 134 adantl
 |-  ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 )
136 0re
 |-  0 e. RR
137 pipos
 |-  0 < _pi
138 136 137 gtneii
 |-  _pi =/= 0
139 138 a1i
 |-  ( ( n e. NN /\ s e. A ) -> _pi =/= 0 )
140 117 122 124 135 139 divdiv1d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) ) )
141 2cnd
 |-  ( ( n e. NN /\ s e. A ) -> 2 e. CC )
142 129 adantl
 |-  ( ( n e. NN /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. CC )
143 141 142 124 mulassd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) = ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) )
144 143 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) ) )
145 142 124 mulcomd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( s / 2 ) ) x. _pi ) = ( _pi x. ( sin ` ( s / 2 ) ) ) )
146 145 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) = ( 2 x. ( _pi x. ( sin ` ( s / 2 ) ) ) ) )
147 141 124 142 mulassd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) = ( 2 x. ( _pi x. ( sin ` ( s / 2 ) ) ) ) )
148 146 147 eqtr4d
 |-  ( ( n e. NN /\ s e. A ) -> ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) )
149 148 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) )
150 140 144 149 3eqtrd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) )
151 150 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) ) = ( _pi x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) )
152 116 121 135 redivcld
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR )
153 152 recnd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC )
154 153 124 139 divcan2d
 |-  ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) )
155 5 dirkerval2
 |-  ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) )
156 50 155 sylan2
 |-  ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) )
157 fourierdlem24
 |-  ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( s mod ( 2 x. _pi ) ) =/= 0 )
158 157 11 eleq2s
 |-  ( s e. A -> ( s mod ( 2 x. _pi ) ) =/= 0 )
159 158 neneqd
 |-  ( s e. A -> -. ( s mod ( 2 x. _pi ) ) = 0 )
160 159 adantl
 |-  ( ( n e. NN /\ s e. A ) -> -. ( s mod ( 2 x. _pi ) ) = 0 )
161 160 iffalsed
 |-  ( ( n e. NN /\ s e. A ) -> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) )
162 156 161 eqtr2d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) = ( ( D ` n ) ` s ) )
163 162 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = ( _pi x. ( ( D ` n ) ` s ) ) )
164 151 154 163 3eqtr3d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( _pi x. ( ( D ` n ) ` s ) ) )
165 164 oveq2d
 |-  ( ( n e. NN /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) )
166 165 adantll
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) )
167 123 a1i
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi e. CC )
168 5 dirkerre
 |-  ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR )
169 50 168 sylan2
 |-  ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) e. RR )
170 169 recnd
 |-  ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC )
171 170 adantll
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC )
172 105 167 171 mul12d
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) )
173 109 166 172 3eqtrd
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) )
174 32 104 173 3eqtrd
 |-  ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) )