Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem66.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem66.x |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem66.y |
|- ( ph -> Y e. RR ) |
4 |
|
fourierdlem66.w |
|- ( ph -> W e. RR ) |
5 |
|
fourierdlem66.d |
|- D = ( n e. NN |-> ( s e. RR |-> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
6 |
|
fourierdlem66.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
7 |
|
fourierdlem66.k |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
8 |
|
fourierdlem66.u |
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
9 |
|
fourierdlem66.s |
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
10 |
|
fourierdlem66.g |
|- G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) ) |
11 |
|
fourierdlem66.a |
|- A = ( ( -u _pi [,] _pi ) \ { 0 } ) |
12 |
11
|
eqimssi |
|- A C_ ( ( -u _pi [,] _pi ) \ { 0 } ) |
13 |
|
difss |
|- ( ( -u _pi [,] _pi ) \ { 0 } ) C_ ( -u _pi [,] _pi ) |
14 |
12 13
|
sstri |
|- A C_ ( -u _pi [,] _pi ) |
15 |
14
|
a1i |
|- ( ph -> A C_ ( -u _pi [,] _pi ) ) |
16 |
15
|
sselda |
|- ( ( ph /\ s e. A ) -> s e. ( -u _pi [,] _pi ) ) |
17 |
16
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. ( -u _pi [,] _pi ) ) |
18 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> F : RR --> RR ) |
19 |
2
|
adantr |
|- ( ( ph /\ n e. NN ) -> X e. RR ) |
20 |
3
|
adantr |
|- ( ( ph /\ n e. NN ) -> Y e. RR ) |
21 |
4
|
adantr |
|- ( ( ph /\ n e. NN ) -> W e. RR ) |
22 |
18 19 20 21 6 7 8
|
fourierdlem55 |
|- ( ( ph /\ n e. NN ) -> U : ( -u _pi [,] _pi ) --> RR ) |
23 |
22
|
adantr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> U : ( -u _pi [,] _pi ) --> RR ) |
24 |
23 17
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( U ` s ) e. RR ) |
25 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
26 |
9
|
fourierdlem5 |
|- ( n e. RR -> S : ( -u _pi [,] _pi ) --> RR ) |
27 |
25 26
|
syl |
|- ( n e. NN -> S : ( -u _pi [,] _pi ) --> RR ) |
28 |
27
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> S : ( -u _pi [,] _pi ) --> RR ) |
29 |
28 17
|
ffvelrnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( S ` s ) e. RR ) |
30 |
24 29
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( U ` s ) x. ( S ` s ) ) e. RR ) |
31 |
10
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( ( U ` s ) x. ( S ` s ) ) e. RR ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) ) |
32 |
17 30 31
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) ) |
33 |
1 2 3 4 6
|
fourierdlem9 |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |
34 |
33
|
adantr |
|- ( ( ph /\ s e. A ) -> H : ( -u _pi [,] _pi ) --> RR ) |
35 |
34 16
|
ffvelrnd |
|- ( ( ph /\ s e. A ) -> ( H ` s ) e. RR ) |
36 |
7
|
fourierdlem43 |
|- K : ( -u _pi [,] _pi ) --> RR |
37 |
36
|
a1i |
|- ( ( ph /\ s e. A ) -> K : ( -u _pi [,] _pi ) --> RR ) |
38 |
37 16
|
ffvelrnd |
|- ( ( ph /\ s e. A ) -> ( K ` s ) e. RR ) |
39 |
35 38
|
remulcld |
|- ( ( ph /\ s e. A ) -> ( ( H ` s ) x. ( K ` s ) ) e. RR ) |
40 |
8
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( ( H ` s ) x. ( K ` s ) ) e. RR ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
41 |
16 39 40
|
syl2anc |
|- ( ( ph /\ s e. A ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
42 |
|
0red |
|- ( ( ph /\ s e. A ) -> 0 e. RR ) |
43 |
1
|
adantr |
|- ( ( ph /\ s e. A ) -> F : RR --> RR ) |
44 |
2
|
adantr |
|- ( ( ph /\ s e. A ) -> X e. RR ) |
45 |
|
pire |
|- _pi e. RR |
46 |
45
|
renegcli |
|- -u _pi e. RR |
47 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
48 |
46 45 47
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
49 |
14
|
sseli |
|- ( s e. A -> s e. ( -u _pi [,] _pi ) ) |
50 |
48 49
|
sselid |
|- ( s e. A -> s e. RR ) |
51 |
50
|
adantl |
|- ( ( ph /\ s e. A ) -> s e. RR ) |
52 |
44 51
|
readdcld |
|- ( ( ph /\ s e. A ) -> ( X + s ) e. RR ) |
53 |
43 52
|
ffvelrnd |
|- ( ( ph /\ s e. A ) -> ( F ` ( X + s ) ) e. RR ) |
54 |
3 4
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. RR ) |
55 |
54
|
adantr |
|- ( ( ph /\ s e. A ) -> if ( 0 < s , Y , W ) e. RR ) |
56 |
53 55
|
resubcld |
|- ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. RR ) |
57 |
|
simpr |
|- ( ( ph /\ s e. A ) -> s e. A ) |
58 |
12 57
|
sselid |
|- ( ( ph /\ s e. A ) -> s e. ( ( -u _pi [,] _pi ) \ { 0 } ) ) |
59 |
58
|
eldifbd |
|- ( ( ph /\ s e. A ) -> -. s e. { 0 } ) |
60 |
|
velsn |
|- ( s e. { 0 } <-> s = 0 ) |
61 |
59 60
|
sylnib |
|- ( ( ph /\ s e. A ) -> -. s = 0 ) |
62 |
61
|
neqned |
|- ( ( ph /\ s e. A ) -> s =/= 0 ) |
63 |
56 51 62
|
redivcld |
|- ( ( ph /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) e. RR ) |
64 |
42 63
|
ifcld |
|- ( ( ph /\ s e. A ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. RR ) |
65 |
6
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. RR ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
66 |
16 64 65
|
syl2anc |
|- ( ( ph /\ s e. A ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
67 |
61
|
iffalsed |
|- ( ( ph /\ s e. A ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
68 |
66 67
|
eqtrd |
|- ( ( ph /\ s e. A ) -> ( H ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
69 |
|
1red |
|- ( ( ph /\ s e. A ) -> 1 e. RR ) |
70 |
|
2re |
|- 2 e. RR |
71 |
70
|
a1i |
|- ( ( ph /\ s e. A ) -> 2 e. RR ) |
72 |
51
|
rehalfcld |
|- ( ( ph /\ s e. A ) -> ( s / 2 ) e. RR ) |
73 |
72
|
resincld |
|- ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. RR ) |
74 |
71 73
|
remulcld |
|- ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
75 |
|
2cnd |
|- ( ( ph /\ s e. A ) -> 2 e. CC ) |
76 |
73
|
recnd |
|- ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. CC ) |
77 |
|
2ne0 |
|- 2 =/= 0 |
78 |
77
|
a1i |
|- ( ( ph /\ s e. A ) -> 2 =/= 0 ) |
79 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
80 |
16 62 79
|
syl2anc |
|- ( ( ph /\ s e. A ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
81 |
75 76 78 80
|
mulne0d |
|- ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
82 |
51 74 81
|
redivcld |
|- ( ( ph /\ s e. A ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR ) |
83 |
69 82
|
ifcld |
|- ( ( ph /\ s e. A ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. RR ) |
84 |
7
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. RR ) -> ( K ` s ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
85 |
16 83 84
|
syl2anc |
|- ( ( ph /\ s e. A ) -> ( K ` s ) = if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
86 |
61
|
iffalsed |
|- ( ( ph /\ s e. A ) -> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
87 |
85 86
|
eqtrd |
|- ( ( ph /\ s e. A ) -> ( K ` s ) = ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
88 |
68 87
|
oveq12d |
|- ( ( ph /\ s e. A ) -> ( ( H ` s ) x. ( K ` s ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
89 |
56
|
recnd |
|- ( ( ph /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
90 |
51
|
recnd |
|- ( ( ph /\ s e. A ) -> s e. CC ) |
91 |
75 76
|
mulcld |
|- ( ( ph /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
92 |
89 90 91 62 81
|
dmdcan2d |
|- ( ( ph /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
93 |
41 88 92
|
3eqtrd |
|- ( ( ph /\ s e. A ) -> ( U ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
94 |
93
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( U ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
95 |
25
|
ad2antlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> n e. RR ) |
96 |
|
1red |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> 1 e. RR ) |
97 |
96
|
rehalfcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 1 / 2 ) e. RR ) |
98 |
95 97
|
readdcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( n + ( 1 / 2 ) ) e. RR ) |
99 |
50
|
adantl |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> s e. RR ) |
100 |
98 99
|
remulcld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( n + ( 1 / 2 ) ) x. s ) e. RR ) |
101 |
100
|
resincld |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR ) |
102 |
9
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR ) -> ( S ` s ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
103 |
17 101 102
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( S ` s ) = ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) |
104 |
94 103
|
oveq12d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( U ` s ) x. ( S ` s ) ) = ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) ) |
105 |
89
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
106 |
91
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
107 |
101
|
recnd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. CC ) |
108 |
81
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
109 |
105 106 107 108
|
div32d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
110 |
25
|
adantr |
|- ( ( n e. NN /\ s e. A ) -> n e. RR ) |
111 |
|
halfre |
|- ( 1 / 2 ) e. RR |
112 |
111
|
a1i |
|- ( ( n e. NN /\ s e. A ) -> ( 1 / 2 ) e. RR ) |
113 |
110 112
|
readdcld |
|- ( ( n e. NN /\ s e. A ) -> ( n + ( 1 / 2 ) ) e. RR ) |
114 |
50
|
adantl |
|- ( ( n e. NN /\ s e. A ) -> s e. RR ) |
115 |
113 114
|
remulcld |
|- ( ( n e. NN /\ s e. A ) -> ( ( n + ( 1 / 2 ) ) x. s ) e. RR ) |
116 |
115
|
resincld |
|- ( ( n e. NN /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. RR ) |
117 |
116
|
recnd |
|- ( ( n e. NN /\ s e. A ) -> ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) e. CC ) |
118 |
70
|
a1i |
|- ( ( n e. NN /\ s e. A ) -> 2 e. RR ) |
119 |
114
|
rehalfcld |
|- ( ( n e. NN /\ s e. A ) -> ( s / 2 ) e. RR ) |
120 |
119
|
resincld |
|- ( ( n e. NN /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. RR ) |
121 |
118 120
|
remulcld |
|- ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
122 |
121
|
recnd |
|- ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
123 |
|
picn |
|- _pi e. CC |
124 |
123
|
a1i |
|- ( ( n e. NN /\ s e. A ) -> _pi e. CC ) |
125 |
|
2cnd |
|- ( s e. A -> 2 e. CC ) |
126 |
|
rehalfcl |
|- ( s e. RR -> ( s / 2 ) e. RR ) |
127 |
|
resincl |
|- ( ( s / 2 ) e. RR -> ( sin ` ( s / 2 ) ) e. RR ) |
128 |
50 126 127
|
3syl |
|- ( s e. A -> ( sin ` ( s / 2 ) ) e. RR ) |
129 |
128
|
recnd |
|- ( s e. A -> ( sin ` ( s / 2 ) ) e. CC ) |
130 |
77
|
a1i |
|- ( s e. A -> 2 =/= 0 ) |
131 |
|
eldifsni |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> s =/= 0 ) |
132 |
131 11
|
eleq2s |
|- ( s e. A -> s =/= 0 ) |
133 |
49 132 79
|
syl2anc |
|- ( s e. A -> ( sin ` ( s / 2 ) ) =/= 0 ) |
134 |
125 129 130 133
|
mulne0d |
|- ( s e. A -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
135 |
134
|
adantl |
|- ( ( n e. NN /\ s e. A ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
136 |
|
0re |
|- 0 e. RR |
137 |
|
pipos |
|- 0 < _pi |
138 |
136 137
|
gtneii |
|- _pi =/= 0 |
139 |
138
|
a1i |
|- ( ( n e. NN /\ s e. A ) -> _pi =/= 0 ) |
140 |
117 122 124 135 139
|
divdiv1d |
|- ( ( n e. NN /\ s e. A ) -> ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) ) ) |
141 |
|
2cnd |
|- ( ( n e. NN /\ s e. A ) -> 2 e. CC ) |
142 |
129
|
adantl |
|- ( ( n e. NN /\ s e. A ) -> ( sin ` ( s / 2 ) ) e. CC ) |
143 |
141 142 124
|
mulassd |
|- ( ( n e. NN /\ s e. A ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) = ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) ) |
144 |
143
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. ( sin ` ( s / 2 ) ) ) x. _pi ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) ) ) |
145 |
142 124
|
mulcomd |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( s / 2 ) ) x. _pi ) = ( _pi x. ( sin ` ( s / 2 ) ) ) ) |
146 |
145
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) = ( 2 x. ( _pi x. ( sin ` ( s / 2 ) ) ) ) ) |
147 |
141 124 142
|
mulassd |
|- ( ( n e. NN /\ s e. A ) -> ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) = ( 2 x. ( _pi x. ( sin ` ( s / 2 ) ) ) ) ) |
148 |
146 147
|
eqtr4d |
|- ( ( n e. NN /\ s e. A ) -> ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) = ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) |
149 |
148
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( ( sin ` ( s / 2 ) ) x. _pi ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
150 |
140 144 149
|
3eqtrd |
|- ( ( n e. NN /\ s e. A ) -> ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
151 |
150
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) ) = ( _pi x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
152 |
116 121 135
|
redivcld |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR ) |
153 |
152
|
recnd |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC ) |
154 |
153 124 139
|
divcan2d |
|- ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) / _pi ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
155 |
5
|
dirkerval2 |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
156 |
50 155
|
sylan2 |
|- ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) = if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) ) |
157 |
|
fourierdlem24 |
|- ( s e. ( ( -u _pi [,] _pi ) \ { 0 } ) -> ( s mod ( 2 x. _pi ) ) =/= 0 ) |
158 |
157 11
|
eleq2s |
|- ( s e. A -> ( s mod ( 2 x. _pi ) ) =/= 0 ) |
159 |
158
|
neneqd |
|- ( s e. A -> -. ( s mod ( 2 x. _pi ) ) = 0 ) |
160 |
159
|
adantl |
|- ( ( n e. NN /\ s e. A ) -> -. ( s mod ( 2 x. _pi ) ) = 0 ) |
161 |
160
|
iffalsed |
|- ( ( n e. NN /\ s e. A ) -> if ( ( s mod ( 2 x. _pi ) ) = 0 , ( ( ( 2 x. n ) + 1 ) / ( 2 x. _pi ) ) , ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) |
162 |
156 161
|
eqtr2d |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) = ( ( D ` n ) ` s ) ) |
163 |
162
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( _pi x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( ( 2 x. _pi ) x. ( sin ` ( s / 2 ) ) ) ) ) = ( _pi x. ( ( D ` n ) ` s ) ) ) |
164 |
151 154 163
|
3eqtr3d |
|- ( ( n e. NN /\ s e. A ) -> ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( _pi x. ( ( D ` n ) ` s ) ) ) |
165 |
164
|
oveq2d |
|- ( ( n e. NN /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) ) |
166 |
165
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) ) |
167 |
123
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> _pi e. CC ) |
168 |
5
|
dirkerre |
|- ( ( n e. NN /\ s e. RR ) -> ( ( D ` n ) ` s ) e. RR ) |
169 |
50 168
|
sylan2 |
|- ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) e. RR ) |
170 |
169
|
recnd |
|- ( ( n e. NN /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC ) |
171 |
170
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( D ` n ) ` s ) e. CC ) |
172 |
105 167 171
|
mul12d |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( _pi x. ( ( D ` n ) ` s ) ) ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
173 |
109 166 172
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / ( 2 x. ( sin ` ( s / 2 ) ) ) ) x. ( sin ` ( ( n + ( 1 / 2 ) ) x. s ) ) ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |
174 |
32 104 173
|
3eqtrd |
|- ( ( ( ph /\ n e. NN ) /\ s e. A ) -> ( G ` s ) = ( _pi x. ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) x. ( ( D ` n ) ` s ) ) ) ) |