| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fourierdlem69.p | 
							 |-  P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) | 
						
						
							| 2 | 
							
								
							 | 
							fourierdlem69.m | 
							 |-  ( ph -> M e. NN )  | 
						
						
							| 3 | 
							
								
							 | 
							fourierdlem69.q | 
							 |-  ( ph -> Q e. ( P ` M ) )  | 
						
						
							| 4 | 
							
								
							 | 
							fourierdlem69.f | 
							 |-  ( ph -> F : ( A [,] B ) --> CC )  | 
						
						
							| 5 | 
							
								
							 | 
							fourierdlem69.fcn | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 6 | 
							
								
							 | 
							fourierdlem69.r | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							fourierdlem69.l | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 8 | 
							
								1
							 | 
							fourierdlem2 | 
							 |-  ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 9 | 
							
								2 8
							 | 
							syl | 
							 |-  ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) )  | 
						
						
							| 10 | 
							
								3 9
							 | 
							mpbid | 
							 |-  ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							simprd | 
							 |-  ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 12 | 
							
								11
							 | 
							simpld | 
							 |-  ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							simpld | 
							 |-  ( ph -> ( Q ` 0 ) = A )  | 
						
						
							| 14 | 
							
								12
							 | 
							simprd | 
							 |-  ( ph -> ( Q ` M ) = B )  | 
						
						
							| 15 | 
							
								13 14
							 | 
							oveq12d | 
							 |-  ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							feq2d | 
							 |-  ( ph -> ( F : ( ( Q ` 0 ) [,] ( Q ` M ) ) --> CC <-> F : ( A [,] B ) --> CC ) )  | 
						
						
							| 17 | 
							
								4 16
							 | 
							mpbird | 
							 |-  ( ph -> F : ( ( Q ` 0 ) [,] ( Q ` M ) ) --> CC )  | 
						
						
							| 18 | 
							
								17
							 | 
							feqmptd | 
							 |-  ( ph -> F = ( x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) |-> ( F ` x ) ) )  | 
						
						
							| 19 | 
							
								
							 | 
							nfv | 
							 |-  F/ x ph  | 
						
						
							| 20 | 
							
								
							 | 
							0zd | 
							 |-  ( ph -> 0 e. ZZ )  | 
						
						
							| 21 | 
							
								
							 | 
							nnuz | 
							 |-  NN = ( ZZ>= ` 1 )  | 
						
						
							| 22 | 
							
								
							 | 
							1e0p1 | 
							 |-  1 = ( 0 + 1 )  | 
						
						
							| 23 | 
							
								22
							 | 
							fveq2i | 
							 |-  ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) )  | 
						
						
							| 24 | 
							
								21 23
							 | 
							eqtri | 
							 |-  NN = ( ZZ>= ` ( 0 + 1 ) )  | 
						
						
							| 25 | 
							
								2 24
							 | 
							eleqtrdi | 
							 |-  ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) )  | 
						
						
							| 26 | 
							
								10
							 | 
							simpld | 
							 |-  ( ph -> Q e. ( RR ^m ( 0 ... M ) ) )  | 
						
						
							| 27 | 
							
								
							 | 
							elmapi | 
							 |-  ( Q e. ( RR ^m ( 0 ... M ) ) -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 28 | 
							
								26 27
							 | 
							syl | 
							 |-  ( ph -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 29 | 
							
								28
							 | 
							ffvelcdmda | 
							 |-  ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR )  | 
						
						
							| 30 | 
							
								11
							 | 
							simprd | 
							 |-  ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							r19.21bi | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) )  | 
						
						
							| 32 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> F : ( A [,] B ) --> CC )  | 
						
						
							| 33 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) )  | 
						
						
							| 34 | 
							
								13
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( Q ` 0 ) = A )  | 
						
						
							| 35 | 
							
								14
							 | 
							adantr | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( Q ` M ) = B )  | 
						
						
							| 36 | 
							
								34 35
							 | 
							oveq12d | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) )  | 
						
						
							| 37 | 
							
								33 36
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 38 | 
							
								32 37
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( F ` x ) e. CC )  | 
						
						
							| 39 | 
							
								28
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR )  | 
						
						
							| 40 | 
							
								
							 | 
							elfzofz | 
							 |-  ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) )  | 
						
						
							| 41 | 
							
								40
							 | 
							adantl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) )  | 
						
						
							| 42 | 
							
								39 41
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR )  | 
						
						
							| 43 | 
							
								
							 | 
							fzofzp1 | 
							 |-  ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 44 | 
							
								43
							 | 
							adantl | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) )  | 
						
						
							| 45 | 
							
								39 44
							 | 
							ffvelcdmd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR )  | 
						
						
							| 46 | 
							
								4
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : ( A [,] B ) --> CC )  | 
						
						
							| 47 | 
							
								
							 | 
							ioossicc | 
							 |-  ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) )  | 
						
						
							| 48 | 
							
								1 2 3
							 | 
							fourierdlem11 | 
							 |-  ( ph -> ( A e. RR /\ B e. RR /\ A < B ) )  | 
						
						
							| 49 | 
							
								48
							 | 
							simp1d | 
							 |-  ( ph -> A e. RR )  | 
						
						
							| 50 | 
							
								49
							 | 
							rexrd | 
							 |-  ( ph -> A e. RR* )  | 
						
						
							| 51 | 
							
								50
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* )  | 
						
						
							| 52 | 
							
								48
							 | 
							simp2d | 
							 |-  ( ph -> B e. RR )  | 
						
						
							| 53 | 
							
								52
							 | 
							rexrd | 
							 |-  ( ph -> B e. RR* )  | 
						
						
							| 54 | 
							
								53
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* )  | 
						
						
							| 55 | 
							
								1 2 3
							 | 
							fourierdlem15 | 
							 |-  ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) )  | 
						
						
							| 56 | 
							
								55
							 | 
							adantr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) )  | 
						
						
							| 57 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) )  | 
						
						
							| 58 | 
							
								51 54 56 57
							 | 
							fourierdlem8 | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) )  | 
						
						
							| 59 | 
							
								47 58
							 | 
							sstrid | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) )  | 
						
						
							| 60 | 
							
								46 59
							 | 
							feqresmpt | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) )  | 
						
						
							| 61 | 
							
								60 5
							 | 
							eqeltrrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) )  | 
						
						
							| 62 | 
							
								60
							 | 
							oveq1d | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 63 | 
							
								7 62
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) )  | 
						
						
							| 64 | 
							
								60
							 | 
							oveq1d | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 65 | 
							
								6 64
							 | 
							eleqtrd | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) )  | 
						
						
							| 66 | 
							
								42 45 61 63 65
							 | 
							iblcncfioo | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 )  | 
						
						
							| 67 | 
							
								46
							 | 
							adantr | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC )  | 
						
						
							| 68 | 
							
								58
							 | 
							sselda | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) )  | 
						
						
							| 69 | 
							
								67 68
							 | 
							ffvelcdmd | 
							 |-  ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC )  | 
						
						
							| 70 | 
							
								42 45 66 69
							 | 
							ibliooicc | 
							 |-  ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 )  | 
						
						
							| 71 | 
							
								19 20 25 29 31 38 70
							 | 
							iblspltprt | 
							 |-  ( ph -> ( x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) |-> ( F ` x ) ) e. L^1 )  | 
						
						
							| 72 | 
							
								18 71
							 | 
							eqeltrd | 
							 |-  ( ph -> F e. L^1 )  |