Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem7.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem7.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem7.altb |
|- ( ph -> A < B ) |
4 |
|
fourierdlem7.t |
|- T = ( B - A ) |
5 |
|
fourierdlem7.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
6 |
|
fourierdlem7.x |
|- ( ph -> X e. RR ) |
7 |
|
fourierdlem7.y |
|- ( ph -> Y e. RR ) |
8 |
|
fourierdlem7.xlty |
|- ( ph -> X <_ Y ) |
9 |
2 7
|
resubcld |
|- ( ph -> ( B - Y ) e. RR ) |
10 |
2 1
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
11 |
4 10
|
eqeltrid |
|- ( ph -> T e. RR ) |
12 |
1 2
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
13 |
3 12
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
14 |
13 4
|
breqtrrdi |
|- ( ph -> 0 < T ) |
15 |
14
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
16 |
9 11 15
|
redivcld |
|- ( ph -> ( ( B - Y ) / T ) e. RR ) |
17 |
2 6
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
18 |
17 11 15
|
redivcld |
|- ( ph -> ( ( B - X ) / T ) e. RR ) |
19 |
11 14
|
elrpd |
|- ( ph -> T e. RR+ ) |
20 |
6 7 2 8
|
lesub2dd |
|- ( ph -> ( B - Y ) <_ ( B - X ) ) |
21 |
9 17 19 20
|
lediv1dd |
|- ( ph -> ( ( B - Y ) / T ) <_ ( ( B - X ) / T ) ) |
22 |
|
flwordi |
|- ( ( ( ( B - Y ) / T ) e. RR /\ ( ( B - X ) / T ) e. RR /\ ( ( B - Y ) / T ) <_ ( ( B - X ) / T ) ) -> ( |_ ` ( ( B - Y ) / T ) ) <_ ( |_ ` ( ( B - X ) / T ) ) ) |
23 |
16 18 21 22
|
syl3anc |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) <_ ( |_ ` ( ( B - X ) / T ) ) ) |
24 |
16
|
flcld |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. ZZ ) |
25 |
24
|
zred |
|- ( ph -> ( |_ ` ( ( B - Y ) / T ) ) e. RR ) |
26 |
18
|
flcld |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. ZZ ) |
27 |
26
|
zred |
|- ( ph -> ( |_ ` ( ( B - X ) / T ) ) e. RR ) |
28 |
25 27 19
|
lemul1d |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) <_ ( |_ ` ( ( B - X ) / T ) ) <-> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) <_ ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
29 |
23 28
|
mpbid |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) <_ ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
30 |
5
|
a1i |
|- ( ph -> E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
31 |
|
id |
|- ( x = Y -> x = Y ) |
32 |
|
oveq2 |
|- ( x = Y -> ( B - x ) = ( B - Y ) ) |
33 |
32
|
oveq1d |
|- ( x = Y -> ( ( B - x ) / T ) = ( ( B - Y ) / T ) ) |
34 |
33
|
fveq2d |
|- ( x = Y -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - Y ) / T ) ) ) |
35 |
34
|
oveq1d |
|- ( x = Y -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) |
36 |
31 35
|
oveq12d |
|- ( x = Y -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
37 |
36
|
adantl |
|- ( ( ph /\ x = Y ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
38 |
25 11
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) e. RR ) |
39 |
7 38
|
readdcld |
|- ( ph -> ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) e. RR ) |
40 |
30 37 7 39
|
fvmptd |
|- ( ph -> ( E ` Y ) = ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) ) |
41 |
40
|
oveq1d |
|- ( ph -> ( ( E ` Y ) - Y ) = ( ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) - Y ) ) |
42 |
7
|
recnd |
|- ( ph -> Y e. CC ) |
43 |
38
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) e. CC ) |
44 |
42 43
|
pncan2d |
|- ( ph -> ( ( Y + ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) - Y ) = ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) |
45 |
41 44
|
eqtrd |
|- ( ph -> ( ( E ` Y ) - Y ) = ( ( |_ ` ( ( B - Y ) / T ) ) x. T ) ) |
46 |
|
id |
|- ( x = X -> x = X ) |
47 |
|
oveq2 |
|- ( x = X -> ( B - x ) = ( B - X ) ) |
48 |
47
|
oveq1d |
|- ( x = X -> ( ( B - x ) / T ) = ( ( B - X ) / T ) ) |
49 |
48
|
fveq2d |
|- ( x = X -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - X ) / T ) ) ) |
50 |
49
|
oveq1d |
|- ( x = X -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
51 |
46 50
|
oveq12d |
|- ( x = X -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ x = X ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
53 |
27 11
|
remulcld |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. RR ) |
54 |
6 53
|
readdcld |
|- ( ph -> ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) e. RR ) |
55 |
30 52 6 54
|
fvmptd |
|- ( ph -> ( E ` X ) = ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) ) |
56 |
55
|
oveq1d |
|- ( ph -> ( ( E ` X ) - X ) = ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) ) |
57 |
6
|
recnd |
|- ( ph -> X e. CC ) |
58 |
53
|
recnd |
|- ( ph -> ( ( |_ ` ( ( B - X ) / T ) ) x. T ) e. CC ) |
59 |
57 58
|
pncan2d |
|- ( ph -> ( ( X + ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) - X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
60 |
56 59
|
eqtrd |
|- ( ph -> ( ( E ` X ) - X ) = ( ( |_ ` ( ( B - X ) / T ) ) x. T ) ) |
61 |
29 45 60
|
3brtr4d |
|- ( ph -> ( ( E ` Y ) - Y ) <_ ( ( E ` X ) - X ) ) |