Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem70.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem70.2 |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem70.aleb |
|- ( ph -> A <_ B ) |
4 |
|
fourierdlem70.f |
|- ( ph -> F : ( A [,] B ) --> RR ) |
5 |
|
fourierdlem70.m |
|- ( ph -> M e. NN ) |
6 |
|
fourierdlem70.q |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
7 |
|
fourierdlem70.q0 |
|- ( ph -> ( Q ` 0 ) = A ) |
8 |
|
fourierdlem70.qm |
|- ( ph -> ( Q ` M ) = B ) |
9 |
|
fourierdlem70.qlt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
10 |
|
fourierdlem70.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
11 |
|
fourierdlem70.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
12 |
|
fourierdlem70.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
13 |
|
fourierdlem70.i |
|- I = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
14 |
|
prfi |
|- { ran Q , U. ran I } e. Fin |
15 |
14
|
a1i |
|- ( ph -> { ran Q , U. ran I } e. Fin ) |
16 |
|
simpr |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> s e. U. { ran Q , U. ran I } ) |
17 |
|
ovex |
|- ( 0 ... M ) e. _V |
18 |
|
fex |
|- ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. _V ) -> Q e. _V ) |
19 |
6 17 18
|
sylancl |
|- ( ph -> Q e. _V ) |
20 |
|
rnexg |
|- ( Q e. _V -> ran Q e. _V ) |
21 |
19 20
|
syl |
|- ( ph -> ran Q e. _V ) |
22 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
23 |
13
|
rnmptfi |
|- ( ( 0 ..^ M ) e. Fin -> ran I e. Fin ) |
24 |
22 23
|
ax-mp |
|- ran I e. Fin |
25 |
24
|
elexi |
|- ran I e. _V |
26 |
25
|
uniex |
|- U. ran I e. _V |
27 |
|
uniprg |
|- ( ( ran Q e. _V /\ U. ran I e. _V ) -> U. { ran Q , U. ran I } = ( ran Q u. U. ran I ) ) |
28 |
21 26 27
|
sylancl |
|- ( ph -> U. { ran Q , U. ran I } = ( ran Q u. U. ran I ) ) |
29 |
28
|
adantr |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> U. { ran Q , U. ran I } = ( ran Q u. U. ran I ) ) |
30 |
16 29
|
eleqtrd |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> s e. ( ran Q u. U. ran I ) ) |
31 |
|
eqid |
|- ( y e. NN |-> { v e. ( RR ^m ( 0 ... y ) ) | ( ( ( v ` 0 ) = A /\ ( v ` y ) = B ) /\ A. i e. ( 0 ..^ y ) ( v ` i ) < ( v ` ( i + 1 ) ) ) } ) = ( y e. NN |-> { v e. ( RR ^m ( 0 ... y ) ) | ( ( ( v ` 0 ) = A /\ ( v ` y ) = B ) /\ A. i e. ( 0 ..^ y ) ( v ` i ) < ( v ` ( i + 1 ) ) ) } ) |
32 |
|
reex |
|- RR e. _V |
33 |
32 17
|
elmap |
|- ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) |
34 |
6 33
|
sylibr |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
35 |
7 8
|
jca |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
36 |
9
|
ralrimiva |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
37 |
34 35 36
|
jca32 |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
38 |
31
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( ( y e. NN |-> { v e. ( RR ^m ( 0 ... y ) ) | ( ( ( v ` 0 ) = A /\ ( v ` y ) = B ) /\ A. i e. ( 0 ..^ y ) ( v ` i ) < ( v ` ( i + 1 ) ) ) } ) ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
39 |
5 38
|
syl |
|- ( ph -> ( Q e. ( ( y e. NN |-> { v e. ( RR ^m ( 0 ... y ) ) | ( ( ( v ` 0 ) = A /\ ( v ` y ) = B ) /\ A. i e. ( 0 ..^ y ) ( v ` i ) < ( v ` ( i + 1 ) ) ) } ) ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
40 |
37 39
|
mpbird |
|- ( ph -> Q e. ( ( y e. NN |-> { v e. ( RR ^m ( 0 ... y ) ) | ( ( ( v ` 0 ) = A /\ ( v ` y ) = B ) /\ A. i e. ( 0 ..^ y ) ( v ` i ) < ( v ` ( i + 1 ) ) ) } ) ` M ) ) |
41 |
31 5 40
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
42 |
41
|
frnd |
|- ( ph -> ran Q C_ ( A [,] B ) ) |
43 |
42
|
sselda |
|- ( ( ph /\ s e. ran Q ) -> s e. ( A [,] B ) ) |
44 |
43
|
adantlr |
|- ( ( ( ph /\ s e. ( ran Q u. U. ran I ) ) /\ s e. ran Q ) -> s e. ( A [,] B ) ) |
45 |
|
simpll |
|- ( ( ( ph /\ s e. ( ran Q u. U. ran I ) ) /\ -. s e. ran Q ) -> ph ) |
46 |
|
elunnel1 |
|- ( ( s e. ( ran Q u. U. ran I ) /\ -. s e. ran Q ) -> s e. U. ran I ) |
47 |
46
|
adantll |
|- ( ( ( ph /\ s e. ( ran Q u. U. ran I ) ) /\ -. s e. ran Q ) -> s e. U. ran I ) |
48 |
|
simpr |
|- ( ( ph /\ s e. U. ran I ) -> s e. U. ran I ) |
49 |
13
|
funmpt2 |
|- Fun I |
50 |
|
elunirn |
|- ( Fun I -> ( s e. U. ran I <-> E. i e. dom I s e. ( I ` i ) ) ) |
51 |
49 50
|
mp1i |
|- ( ( ph /\ s e. U. ran I ) -> ( s e. U. ran I <-> E. i e. dom I s e. ( I ` i ) ) ) |
52 |
48 51
|
mpbid |
|- ( ( ph /\ s e. U. ran I ) -> E. i e. dom I s e. ( I ` i ) ) |
53 |
|
id |
|- ( i e. dom I -> i e. dom I ) |
54 |
|
ovex |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. _V |
55 |
54 13
|
dmmpti |
|- dom I = ( 0 ..^ M ) |
56 |
53 55
|
eleqtrdi |
|- ( i e. dom I -> i e. ( 0 ..^ M ) ) |
57 |
13
|
fvmpt2 |
|- ( ( i e. ( 0 ..^ M ) /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. _V ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
58 |
56 54 57
|
sylancl |
|- ( i e. dom I -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
59 |
58
|
adantl |
|- ( ( ph /\ i e. dom I ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
60 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
61 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
62 |
61
|
adantr |
|- ( ( ph /\ i e. dom I ) -> A e. RR* ) |
63 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
64 |
63
|
adantr |
|- ( ( ph /\ i e. dom I ) -> B e. RR* ) |
65 |
41
|
adantr |
|- ( ( ph /\ i e. dom I ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
66 |
56
|
adantl |
|- ( ( ph /\ i e. dom I ) -> i e. ( 0 ..^ M ) ) |
67 |
62 64 65 66
|
fourierdlem8 |
|- ( ( ph /\ i e. dom I ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
68 |
60 67
|
sstrid |
|- ( ( ph /\ i e. dom I ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
69 |
59 68
|
eqsstrd |
|- ( ( ph /\ i e. dom I ) -> ( I ` i ) C_ ( A [,] B ) ) |
70 |
69
|
3adant3 |
|- ( ( ph /\ i e. dom I /\ s e. ( I ` i ) ) -> ( I ` i ) C_ ( A [,] B ) ) |
71 |
|
simp3 |
|- ( ( ph /\ i e. dom I /\ s e. ( I ` i ) ) -> s e. ( I ` i ) ) |
72 |
70 71
|
sseldd |
|- ( ( ph /\ i e. dom I /\ s e. ( I ` i ) ) -> s e. ( A [,] B ) ) |
73 |
72
|
3exp |
|- ( ph -> ( i e. dom I -> ( s e. ( I ` i ) -> s e. ( A [,] B ) ) ) ) |
74 |
73
|
adantr |
|- ( ( ph /\ s e. U. ran I ) -> ( i e. dom I -> ( s e. ( I ` i ) -> s e. ( A [,] B ) ) ) ) |
75 |
74
|
rexlimdv |
|- ( ( ph /\ s e. U. ran I ) -> ( E. i e. dom I s e. ( I ` i ) -> s e. ( A [,] B ) ) ) |
76 |
52 75
|
mpd |
|- ( ( ph /\ s e. U. ran I ) -> s e. ( A [,] B ) ) |
77 |
45 47 76
|
syl2anc |
|- ( ( ( ph /\ s e. ( ran Q u. U. ran I ) ) /\ -. s e. ran Q ) -> s e. ( A [,] B ) ) |
78 |
44 77
|
pm2.61dan |
|- ( ( ph /\ s e. ( ran Q u. U. ran I ) ) -> s e. ( A [,] B ) ) |
79 |
30 78
|
syldan |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> s e. ( A [,] B ) ) |
80 |
4
|
ffvelrnda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( F ` s ) e. RR ) |
81 |
79 80
|
syldan |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> ( F ` s ) e. RR ) |
82 |
81
|
recnd |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> ( F ` s ) e. CC ) |
83 |
82
|
abscld |
|- ( ( ph /\ s e. U. { ran Q , U. ran I } ) -> ( abs ` ( F ` s ) ) e. RR ) |
84 |
|
simpr |
|- ( ( ph /\ w = ran Q ) -> w = ran Q ) |
85 |
6
|
adantr |
|- ( ( ph /\ w = ran Q ) -> Q : ( 0 ... M ) --> RR ) |
86 |
|
fzfid |
|- ( ( ph /\ w = ran Q ) -> ( 0 ... M ) e. Fin ) |
87 |
|
rnffi |
|- ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. Fin ) -> ran Q e. Fin ) |
88 |
85 86 87
|
syl2anc |
|- ( ( ph /\ w = ran Q ) -> ran Q e. Fin ) |
89 |
84 88
|
eqeltrd |
|- ( ( ph /\ w = ran Q ) -> w e. Fin ) |
90 |
89
|
adantlr |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ w = ran Q ) -> w e. Fin ) |
91 |
4
|
ad2antrr |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> F : ( A [,] B ) --> RR ) |
92 |
|
simpll |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> ph ) |
93 |
|
simpr |
|- ( ( w = ran Q /\ s e. w ) -> s e. w ) |
94 |
|
simpl |
|- ( ( w = ran Q /\ s e. w ) -> w = ran Q ) |
95 |
93 94
|
eleqtrd |
|- ( ( w = ran Q /\ s e. w ) -> s e. ran Q ) |
96 |
95
|
adantll |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> s e. ran Q ) |
97 |
92 96 43
|
syl2anc |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> s e. ( A [,] B ) ) |
98 |
91 97
|
ffvelrnd |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> ( F ` s ) e. RR ) |
99 |
98
|
recnd |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> ( F ` s ) e. CC ) |
100 |
99
|
abscld |
|- ( ( ( ph /\ w = ran Q ) /\ s e. w ) -> ( abs ` ( F ` s ) ) e. RR ) |
101 |
100
|
ralrimiva |
|- ( ( ph /\ w = ran Q ) -> A. s e. w ( abs ` ( F ` s ) ) e. RR ) |
102 |
101
|
adantlr |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ w = ran Q ) -> A. s e. w ( abs ` ( F ` s ) ) e. RR ) |
103 |
|
fimaxre3 |
|- ( ( w e. Fin /\ A. s e. w ( abs ` ( F ` s ) ) e. RR ) -> E. z e. RR A. s e. w ( abs ` ( F ` s ) ) <_ z ) |
104 |
90 102 103
|
syl2anc |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ w = ran Q ) -> E. z e. RR A. s e. w ( abs ` ( F ` s ) ) <_ z ) |
105 |
|
simpll |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ -. w = ran Q ) -> ph ) |
106 |
|
neqne |
|- ( -. w = ran Q -> w =/= ran Q ) |
107 |
|
elprn1 |
|- ( ( w e. { ran Q , U. ran I } /\ w =/= ran Q ) -> w = U. ran I ) |
108 |
106 107
|
sylan2 |
|- ( ( w e. { ran Q , U. ran I } /\ -. w = ran Q ) -> w = U. ran I ) |
109 |
108
|
adantll |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ -. w = ran Q ) -> w = U. ran I ) |
110 |
22 23
|
mp1i |
|- ( ( ph /\ w = U. ran I ) -> ran I e. Fin ) |
111 |
|
ax-resscn |
|- RR C_ CC |
112 |
111
|
a1i |
|- ( ph -> RR C_ CC ) |
113 |
4 112
|
fssd |
|- ( ph -> F : ( A [,] B ) --> CC ) |
114 |
113
|
ad2antrr |
|- ( ( ( ph /\ w = U. ran I ) /\ s e. U. ran I ) -> F : ( A [,] B ) --> CC ) |
115 |
76
|
adantlr |
|- ( ( ( ph /\ w = U. ran I ) /\ s e. U. ran I ) -> s e. ( A [,] B ) ) |
116 |
114 115
|
ffvelrnd |
|- ( ( ( ph /\ w = U. ran I ) /\ s e. U. ran I ) -> ( F ` s ) e. CC ) |
117 |
116
|
abscld |
|- ( ( ( ph /\ w = U. ran I ) /\ s e. U. ran I ) -> ( abs ` ( F ` s ) ) e. RR ) |
118 |
54 13
|
fnmpti |
|- I Fn ( 0 ..^ M ) |
119 |
|
fvelrnb |
|- ( I Fn ( 0 ..^ M ) -> ( t e. ran I <-> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) ) |
120 |
118 119
|
ax-mp |
|- ( t e. ran I <-> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
121 |
120
|
biimpi |
|- ( t e. ran I -> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
122 |
121
|
adantl |
|- ( ( ph /\ t e. ran I ) -> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
123 |
6
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
124 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
125 |
124
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
126 |
123 125
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
127 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
128 |
127
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
129 |
123 128
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
130 |
126 129 10 12 11
|
cncfioobd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) <_ b ) |
131 |
|
fvres |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) = ( F ` s ) ) |
132 |
131
|
fveq2d |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) = ( abs ` ( F ` s ) ) ) |
133 |
132
|
breq1d |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) <_ b <-> ( abs ` ( F ` s ) ) <_ b ) ) |
134 |
133
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) <_ b <-> ( abs ` ( F ` s ) ) <_ b ) ) |
135 |
134
|
ralbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) <_ b <-> A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b ) ) |
136 |
135
|
rexbidv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` s ) ) <_ b <-> E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b ) ) |
137 |
130 136
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b ) |
138 |
137
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b ) |
139 |
54 57
|
mpan2 |
|- ( i e. ( 0 ..^ M ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
140 |
139
|
eqcomd |
|- ( i e. ( 0 ..^ M ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( I ` i ) ) |
141 |
140
|
adantr |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( I ` i ) ) |
142 |
|
simpr |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( I ` i ) = t ) |
143 |
141 142
|
eqtrd |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = t ) |
144 |
143
|
raleqdv |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b <-> A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) |
145 |
144
|
rexbidv |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b <-> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) |
146 |
145
|
3adant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( E. b e. RR A. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` s ) ) <_ b <-> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) |
147 |
138 146
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) |
148 |
147
|
3exp |
|- ( ph -> ( i e. ( 0 ..^ M ) -> ( ( I ` i ) = t -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) ) |
149 |
148
|
adantr |
|- ( ( ph /\ t e. ran I ) -> ( i e. ( 0 ..^ M ) -> ( ( I ` i ) = t -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) ) |
150 |
149
|
rexlimdv |
|- ( ( ph /\ t e. ran I ) -> ( E. i e. ( 0 ..^ M ) ( I ` i ) = t -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) ) |
151 |
122 150
|
mpd |
|- ( ( ph /\ t e. ran I ) -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) |
152 |
151
|
adantlr |
|- ( ( ( ph /\ w = U. ran I ) /\ t e. ran I ) -> E. b e. RR A. s e. t ( abs ` ( F ` s ) ) <_ b ) |
153 |
|
eqimss |
|- ( w = U. ran I -> w C_ U. ran I ) |
154 |
153
|
adantl |
|- ( ( ph /\ w = U. ran I ) -> w C_ U. ran I ) |
155 |
110 117 152 154
|
ssfiunibd |
|- ( ( ph /\ w = U. ran I ) -> E. z e. RR A. s e. w ( abs ` ( F ` s ) ) <_ z ) |
156 |
105 109 155
|
syl2anc |
|- ( ( ( ph /\ w e. { ran Q , U. ran I } ) /\ -. w = ran Q ) -> E. z e. RR A. s e. w ( abs ` ( F ` s ) ) <_ z ) |
157 |
104 156
|
pm2.61dan |
|- ( ( ph /\ w e. { ran Q , U. ran I } ) -> E. z e. RR A. s e. w ( abs ` ( F ` s ) ) <_ z ) |
158 |
5
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> M e. NN ) |
159 |
6
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> Q : ( 0 ... M ) --> RR ) |
160 |
|
simpr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( A [,] B ) ) |
161 |
7
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
162 |
8
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
163 |
161 162
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
164 |
163
|
adantr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
165 |
160 164
|
eleqtrd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
166 |
165
|
adantr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> t e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
167 |
|
simpr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> -. t e. ran Q ) |
168 |
|
fveq2 |
|- ( k = j -> ( Q ` k ) = ( Q ` j ) ) |
169 |
168
|
breq1d |
|- ( k = j -> ( ( Q ` k ) < t <-> ( Q ` j ) < t ) ) |
170 |
169
|
cbvrabv |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) < t } = { j e. ( 0 ..^ M ) | ( Q ` j ) < t } |
171 |
170
|
supeq1i |
|- sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) < t } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) < t } , RR , < ) |
172 |
158 159 166 167 171
|
fourierdlem25 |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> E. i e. ( 0 ..^ M ) t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
173 |
139
|
eleq2d |
|- ( i e. ( 0 ..^ M ) -> ( t e. ( I ` i ) <-> t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
174 |
173
|
rexbiia |
|- ( E. i e. ( 0 ..^ M ) t e. ( I ` i ) <-> E. i e. ( 0 ..^ M ) t e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
175 |
172 174
|
sylibr |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> E. i e. ( 0 ..^ M ) t e. ( I ` i ) ) |
176 |
55
|
eqcomi |
|- ( 0 ..^ M ) = dom I |
177 |
176
|
rexeqi |
|- ( E. i e. ( 0 ..^ M ) t e. ( I ` i ) <-> E. i e. dom I t e. ( I ` i ) ) |
178 |
175 177
|
sylib |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> E. i e. dom I t e. ( I ` i ) ) |
179 |
|
elunirn |
|- ( Fun I -> ( t e. U. ran I <-> E. i e. dom I t e. ( I ` i ) ) ) |
180 |
49 179
|
mp1i |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> ( t e. U. ran I <-> E. i e. dom I t e. ( I ` i ) ) ) |
181 |
178 180
|
mpbird |
|- ( ( ( ph /\ t e. ( A [,] B ) ) /\ -. t e. ran Q ) -> t e. U. ran I ) |
182 |
181
|
ex |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( -. t e. ran Q -> t e. U. ran I ) ) |
183 |
182
|
orrd |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( t e. ran Q \/ t e. U. ran I ) ) |
184 |
|
elun |
|- ( t e. ( ran Q u. U. ran I ) <-> ( t e. ran Q \/ t e. U. ran I ) ) |
185 |
183 184
|
sylibr |
|- ( ( ph /\ t e. ( A [,] B ) ) -> t e. ( ran Q u. U. ran I ) ) |
186 |
185
|
ralrimiva |
|- ( ph -> A. t e. ( A [,] B ) t e. ( ran Q u. U. ran I ) ) |
187 |
|
dfss3 |
|- ( ( A [,] B ) C_ ( ran Q u. U. ran I ) <-> A. t e. ( A [,] B ) t e. ( ran Q u. U. ran I ) ) |
188 |
186 187
|
sylibr |
|- ( ph -> ( A [,] B ) C_ ( ran Q u. U. ran I ) ) |
189 |
188 28
|
sseqtrrd |
|- ( ph -> ( A [,] B ) C_ U. { ran Q , U. ran I } ) |
190 |
15 83 157 189
|
ssfiunibd |
|- ( ph -> E. x e. RR A. s e. ( A [,] B ) ( abs ` ( F ` s ) ) <_ x ) |