Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem71.dmf |
|- ( ph -> dom F C_ RR ) |
2 |
|
fourierdlem71.f |
|- ( ph -> F : dom F --> RR ) |
3 |
|
fourierdlem71.a |
|- ( ph -> A e. RR ) |
4 |
|
fourierdlem71.b |
|- ( ph -> B e. RR ) |
5 |
|
fourierdlem71.altb |
|- ( ph -> A < B ) |
6 |
|
fourierdlem71.t |
|- T = ( B - A ) |
7 |
|
fourierdlem71.7 |
|- ( ph -> M e. NN ) |
8 |
|
fourierdlem71.q |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
9 |
|
fourierdlem71.q0 |
|- ( ph -> ( Q ` 0 ) = A ) |
10 |
|
fourierdlem71.10 |
|- ( ph -> ( Q ` M ) = B ) |
11 |
|
fourierdlem71.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
12 |
|
fourierdlem71.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
13 |
|
fourierdlem71.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
14 |
|
fourierdlem71.xpt |
|- ( ( ( ph /\ x e. dom F ) /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. dom F ) |
15 |
|
fourierdlem71.fxpt |
|- ( ( ( ph /\ x e. dom F ) /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) |
16 |
|
fourierdlem71.i |
|- I = ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
17 |
|
fourierdlem71.e |
|- E = ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
18 |
|
prfi |
|- { ( ran Q i^i dom F ) , U. ran I } e. Fin |
19 |
18
|
a1i |
|- ( ph -> { ( ran Q i^i dom F ) , U. ran I } e. Fin ) |
20 |
2
|
adantr |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> F : dom F --> RR ) |
21 |
|
simpl |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> ph ) |
22 |
|
simpr |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> x e. U. { ( ran Q i^i dom F ) , U. ran I } ) |
23 |
|
ovex |
|- ( 0 ... M ) e. _V |
24 |
23
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
25 |
8 24
|
fexd |
|- ( ph -> Q e. _V ) |
26 |
|
rnexg |
|- ( Q e. _V -> ran Q e. _V ) |
27 |
|
inex1g |
|- ( ran Q e. _V -> ( ran Q i^i dom F ) e. _V ) |
28 |
25 26 27
|
3syl |
|- ( ph -> ( ran Q i^i dom F ) e. _V ) |
29 |
28
|
adantr |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> ( ran Q i^i dom F ) e. _V ) |
30 |
|
ovex |
|- ( 0 ..^ M ) e. _V |
31 |
30
|
mptex |
|- ( i e. ( 0 ..^ M ) |-> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. _V |
32 |
16 31
|
eqeltri |
|- I e. _V |
33 |
32
|
rnex |
|- ran I e. _V |
34 |
33
|
a1i |
|- ( ph -> ran I e. _V ) |
35 |
34
|
uniexd |
|- ( ph -> U. ran I e. _V ) |
36 |
35
|
adantr |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> U. ran I e. _V ) |
37 |
|
uniprg |
|- ( ( ( ran Q i^i dom F ) e. _V /\ U. ran I e. _V ) -> U. { ( ran Q i^i dom F ) , U. ran I } = ( ( ran Q i^i dom F ) u. U. ran I ) ) |
38 |
29 36 37
|
syl2anc |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> U. { ( ran Q i^i dom F ) , U. ran I } = ( ( ran Q i^i dom F ) u. U. ran I ) ) |
39 |
22 38
|
eleqtrd |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
40 |
|
elinel2 |
|- ( x e. ( ran Q i^i dom F ) -> x e. dom F ) |
41 |
40
|
adantl |
|- ( ( ( ph /\ x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) /\ x e. ( ran Q i^i dom F ) ) -> x e. dom F ) |
42 |
|
simpll |
|- ( ( ( ph /\ x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) /\ -. x e. ( ran Q i^i dom F ) ) -> ph ) |
43 |
|
elunnel1 |
|- ( ( x e. ( ( ran Q i^i dom F ) u. U. ran I ) /\ -. x e. ( ran Q i^i dom F ) ) -> x e. U. ran I ) |
44 |
43
|
adantll |
|- ( ( ( ph /\ x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) /\ -. x e. ( ran Q i^i dom F ) ) -> x e. U. ran I ) |
45 |
16
|
funmpt2 |
|- Fun I |
46 |
|
elunirn |
|- ( Fun I -> ( x e. U. ran I <-> E. i e. dom I x e. ( I ` i ) ) ) |
47 |
45 46
|
ax-mp |
|- ( x e. U. ran I <-> E. i e. dom I x e. ( I ` i ) ) |
48 |
47
|
biimpi |
|- ( x e. U. ran I -> E. i e. dom I x e. ( I ` i ) ) |
49 |
48
|
adantl |
|- ( ( ph /\ x e. U. ran I ) -> E. i e. dom I x e. ( I ` i ) ) |
50 |
|
id |
|- ( i e. dom I -> i e. dom I ) |
51 |
|
ovex |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. _V |
52 |
51 16
|
dmmpti |
|- dom I = ( 0 ..^ M ) |
53 |
50 52
|
eleqtrdi |
|- ( i e. dom I -> i e. ( 0 ..^ M ) ) |
54 |
53
|
adantl |
|- ( ( ph /\ i e. dom I ) -> i e. ( 0 ..^ M ) ) |
55 |
51
|
a1i |
|- ( ( ph /\ i e. dom I ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. _V ) |
56 |
16
|
fvmpt2 |
|- ( ( i e. ( 0 ..^ M ) /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. _V ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
57 |
54 55 56
|
syl2anc |
|- ( ( ph /\ i e. dom I ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
58 |
|
cncff |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
59 |
|
fdm |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
60 |
11 58 59
|
3syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
61 |
53 60
|
sylan2 |
|- ( ( ph /\ i e. dom I ) -> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
62 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F <-> dom ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
63 |
61 62
|
sylibr |
|- ( ( ph /\ i e. dom I ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
64 |
57 63
|
eqsstrd |
|- ( ( ph /\ i e. dom I ) -> ( I ` i ) C_ dom F ) |
65 |
64
|
3adant3 |
|- ( ( ph /\ i e. dom I /\ x e. ( I ` i ) ) -> ( I ` i ) C_ dom F ) |
66 |
|
simp3 |
|- ( ( ph /\ i e. dom I /\ x e. ( I ` i ) ) -> x e. ( I ` i ) ) |
67 |
65 66
|
sseldd |
|- ( ( ph /\ i e. dom I /\ x e. ( I ` i ) ) -> x e. dom F ) |
68 |
67
|
3exp |
|- ( ph -> ( i e. dom I -> ( x e. ( I ` i ) -> x e. dom F ) ) ) |
69 |
68
|
adantr |
|- ( ( ph /\ x e. U. ran I ) -> ( i e. dom I -> ( x e. ( I ` i ) -> x e. dom F ) ) ) |
70 |
69
|
rexlimdv |
|- ( ( ph /\ x e. U. ran I ) -> ( E. i e. dom I x e. ( I ` i ) -> x e. dom F ) ) |
71 |
49 70
|
mpd |
|- ( ( ph /\ x e. U. ran I ) -> x e. dom F ) |
72 |
42 44 71
|
syl2anc |
|- ( ( ( ph /\ x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) /\ -. x e. ( ran Q i^i dom F ) ) -> x e. dom F ) |
73 |
41 72
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) -> x e. dom F ) |
74 |
21 39 73
|
syl2anc |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> x e. dom F ) |
75 |
20 74
|
ffvelrnd |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> ( F ` x ) e. RR ) |
76 |
75
|
recnd |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> ( F ` x ) e. CC ) |
77 |
76
|
abscld |
|- ( ( ph /\ x e. U. { ( ran Q i^i dom F ) , U. ran I } ) -> ( abs ` ( F ` x ) ) e. RR ) |
78 |
|
simpr |
|- ( ( ph /\ w = ( ran Q i^i dom F ) ) -> w = ( ran Q i^i dom F ) ) |
79 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
80 |
|
rnffi |
|- ( ( Q : ( 0 ... M ) --> RR /\ ( 0 ... M ) e. Fin ) -> ran Q e. Fin ) |
81 |
8 79 80
|
syl2anc |
|- ( ph -> ran Q e. Fin ) |
82 |
|
infi |
|- ( ran Q e. Fin -> ( ran Q i^i dom F ) e. Fin ) |
83 |
81 82
|
syl |
|- ( ph -> ( ran Q i^i dom F ) e. Fin ) |
84 |
83
|
adantr |
|- ( ( ph /\ w = ( ran Q i^i dom F ) ) -> ( ran Q i^i dom F ) e. Fin ) |
85 |
78 84
|
eqeltrd |
|- ( ( ph /\ w = ( ran Q i^i dom F ) ) -> w e. Fin ) |
86 |
|
simpll |
|- ( ( ( ph /\ w = ( ran Q i^i dom F ) ) /\ x e. w ) -> ph ) |
87 |
|
simpr |
|- ( ( w = ( ran Q i^i dom F ) /\ x e. w ) -> x e. w ) |
88 |
|
simpl |
|- ( ( w = ( ran Q i^i dom F ) /\ x e. w ) -> w = ( ran Q i^i dom F ) ) |
89 |
87 88
|
eleqtrd |
|- ( ( w = ( ran Q i^i dom F ) /\ x e. w ) -> x e. ( ran Q i^i dom F ) ) |
90 |
89
|
adantll |
|- ( ( ( ph /\ w = ( ran Q i^i dom F ) ) /\ x e. w ) -> x e. ( ran Q i^i dom F ) ) |
91 |
2
|
adantr |
|- ( ( ph /\ x e. ( ran Q i^i dom F ) ) -> F : dom F --> RR ) |
92 |
40
|
adantl |
|- ( ( ph /\ x e. ( ran Q i^i dom F ) ) -> x e. dom F ) |
93 |
91 92
|
ffvelrnd |
|- ( ( ph /\ x e. ( ran Q i^i dom F ) ) -> ( F ` x ) e. RR ) |
94 |
93
|
recnd |
|- ( ( ph /\ x e. ( ran Q i^i dom F ) ) -> ( F ` x ) e. CC ) |
95 |
94
|
abscld |
|- ( ( ph /\ x e. ( ran Q i^i dom F ) ) -> ( abs ` ( F ` x ) ) e. RR ) |
96 |
86 90 95
|
syl2anc |
|- ( ( ( ph /\ w = ( ran Q i^i dom F ) ) /\ x e. w ) -> ( abs ` ( F ` x ) ) e. RR ) |
97 |
96
|
ralrimiva |
|- ( ( ph /\ w = ( ran Q i^i dom F ) ) -> A. x e. w ( abs ` ( F ` x ) ) e. RR ) |
98 |
|
fimaxre3 |
|- ( ( w e. Fin /\ A. x e. w ( abs ` ( F ` x ) ) e. RR ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
99 |
85 97 98
|
syl2anc |
|- ( ( ph /\ w = ( ran Q i^i dom F ) ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
100 |
99
|
adantlr |
|- ( ( ( ph /\ w e. { ( ran Q i^i dom F ) , U. ran I } ) /\ w = ( ran Q i^i dom F ) ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
101 |
|
simpll |
|- ( ( ( ph /\ w e. { ( ran Q i^i dom F ) , U. ran I } ) /\ -. w = ( ran Q i^i dom F ) ) -> ph ) |
102 |
|
neqne |
|- ( -. w = ( ran Q i^i dom F ) -> w =/= ( ran Q i^i dom F ) ) |
103 |
|
elprn1 |
|- ( ( w e. { ( ran Q i^i dom F ) , U. ran I } /\ w =/= ( ran Q i^i dom F ) ) -> w = U. ran I ) |
104 |
102 103
|
sylan2 |
|- ( ( w e. { ( ran Q i^i dom F ) , U. ran I } /\ -. w = ( ran Q i^i dom F ) ) -> w = U. ran I ) |
105 |
104
|
adantll |
|- ( ( ( ph /\ w e. { ( ran Q i^i dom F ) , U. ran I } ) /\ -. w = ( ran Q i^i dom F ) ) -> w = U. ran I ) |
106 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
107 |
16
|
rnmptfi |
|- ( ( 0 ..^ M ) e. Fin -> ran I e. Fin ) |
108 |
106 107
|
ax-mp |
|- ran I e. Fin |
109 |
108
|
a1i |
|- ( ( ph /\ w = U. ran I ) -> ran I e. Fin ) |
110 |
2
|
adantr |
|- ( ( ph /\ x e. U. ran I ) -> F : dom F --> RR ) |
111 |
110 71
|
ffvelrnd |
|- ( ( ph /\ x e. U. ran I ) -> ( F ` x ) e. RR ) |
112 |
111
|
recnd |
|- ( ( ph /\ x e. U. ran I ) -> ( F ` x ) e. CC ) |
113 |
112
|
adantlr |
|- ( ( ( ph /\ w = U. ran I ) /\ x e. U. ran I ) -> ( F ` x ) e. CC ) |
114 |
113
|
abscld |
|- ( ( ( ph /\ w = U. ran I ) /\ x e. U. ran I ) -> ( abs ` ( F ` x ) ) e. RR ) |
115 |
51 16
|
fnmpti |
|- I Fn ( 0 ..^ M ) |
116 |
|
fvelrnb |
|- ( I Fn ( 0 ..^ M ) -> ( t e. ran I <-> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) ) |
117 |
115 116
|
ax-mp |
|- ( t e. ran I <-> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
118 |
117
|
biimpi |
|- ( t e. ran I -> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
119 |
118
|
adantl |
|- ( ( ph /\ t e. ran I ) -> E. i e. ( 0 ..^ M ) ( I ` i ) = t ) |
120 |
8
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
121 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
122 |
121
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
123 |
120 122
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
124 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
125 |
124
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
126 |
120 125
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
127 |
123 126 11 13 12
|
cncfioobd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b ) |
128 |
127
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b ) |
129 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
130 |
129
|
fveq2d |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( abs ` ( F ` x ) ) ) |
131 |
130
|
breq1d |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> ( abs ` ( F ` x ) ) <_ b ) ) |
132 |
131
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> ( abs ` ( F ` x ) ) <_ b ) ) |
133 |
132
|
ralbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` x ) ) <_ b ) ) |
134 |
133
|
rexbidv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` x ) ) <_ b ) ) |
135 |
134
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` x ) ) <_ b ) ) |
136 |
51 56
|
mpan2 |
|- ( i e. ( 0 ..^ M ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
137 |
|
id |
|- ( ( I ` i ) = t -> ( I ` i ) = t ) |
138 |
136 137
|
sylan9req |
|- ( ( i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = t ) |
139 |
138
|
3adant1 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = t ) |
140 |
139
|
raleqdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` x ) ) <_ b <-> A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) |
141 |
140
|
rexbidv |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( F ` x ) ) <_ b <-> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) |
142 |
135 141
|
bitrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> ( E. b e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ b <-> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) |
143 |
128 142
|
mpbid |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ ( I ` i ) = t ) -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) |
144 |
143
|
3exp |
|- ( ph -> ( i e. ( 0 ..^ M ) -> ( ( I ` i ) = t -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) ) |
145 |
144
|
adantr |
|- ( ( ph /\ t e. ran I ) -> ( i e. ( 0 ..^ M ) -> ( ( I ` i ) = t -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) ) |
146 |
145
|
rexlimdv |
|- ( ( ph /\ t e. ran I ) -> ( E. i e. ( 0 ..^ M ) ( I ` i ) = t -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) ) |
147 |
119 146
|
mpd |
|- ( ( ph /\ t e. ran I ) -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) |
148 |
147
|
adantlr |
|- ( ( ( ph /\ w = U. ran I ) /\ t e. ran I ) -> E. b e. RR A. x e. t ( abs ` ( F ` x ) ) <_ b ) |
149 |
|
eqimss |
|- ( w = U. ran I -> w C_ U. ran I ) |
150 |
149
|
adantl |
|- ( ( ph /\ w = U. ran I ) -> w C_ U. ran I ) |
151 |
109 114 148 150
|
ssfiunibd |
|- ( ( ph /\ w = U. ran I ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
152 |
101 105 151
|
syl2anc |
|- ( ( ( ph /\ w e. { ( ran Q i^i dom F ) , U. ran I } ) /\ -. w = ( ran Q i^i dom F ) ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
153 |
100 152
|
pm2.61dan |
|- ( ( ph /\ w e. { ( ran Q i^i dom F ) , U. ran I } ) -> E. y e. RR A. x e. w ( abs ` ( F ` x ) ) <_ y ) |
154 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ x e. ran Q ) -> x e. ran Q ) |
155 |
|
elinel2 |
|- ( x e. ( ( A [,] B ) i^i dom F ) -> x e. dom F ) |
156 |
155
|
ad2antlr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ x e. ran Q ) -> x e. dom F ) |
157 |
154 156
|
elind |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ x e. ran Q ) -> x e. ( ran Q i^i dom F ) ) |
158 |
|
elun1 |
|- ( x e. ( ran Q i^i dom F ) -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
159 |
157 158
|
syl |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ x e. ran Q ) -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
160 |
7
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> M e. NN ) |
161 |
8
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> Q : ( 0 ... M ) --> RR ) |
162 |
|
elinel1 |
|- ( x e. ( ( A [,] B ) i^i dom F ) -> x e. ( A [,] B ) ) |
163 |
162
|
adantl |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> x e. ( A [,] B ) ) |
164 |
9
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
165 |
164
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> A = ( Q ` 0 ) ) |
166 |
10
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
167 |
166
|
adantr |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> B = ( Q ` M ) ) |
168 |
165 167
|
oveq12d |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
169 |
163 168
|
eleqtrd |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
170 |
169
|
adantr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
171 |
|
simpr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> -. x e. ran Q ) |
172 |
|
fveq2 |
|- ( k = j -> ( Q ` k ) = ( Q ` j ) ) |
173 |
172
|
breq1d |
|- ( k = j -> ( ( Q ` k ) < x <-> ( Q ` j ) < x ) ) |
174 |
173
|
cbvrabv |
|- { k e. ( 0 ..^ M ) | ( Q ` k ) < x } = { j e. ( 0 ..^ M ) | ( Q ` j ) < x } |
175 |
174
|
supeq1i |
|- sup ( { k e. ( 0 ..^ M ) | ( Q ` k ) < x } , RR , < ) = sup ( { j e. ( 0 ..^ M ) | ( Q ` j ) < x } , RR , < ) |
176 |
160 161 170 171 175
|
fourierdlem25 |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> E. i e. ( 0 ..^ M ) x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
177 |
53
|
ad2antrl |
|- ( ( ph /\ ( i e. dom I /\ x e. ( I ` i ) ) ) -> i e. ( 0 ..^ M ) ) |
178 |
|
simprr |
|- ( ( ph /\ ( i e. dom I /\ x e. ( I ` i ) ) ) -> x e. ( I ` i ) ) |
179 |
177 136
|
syl |
|- ( ( ph /\ ( i e. dom I /\ x e. ( I ` i ) ) ) -> ( I ` i ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
180 |
178 179
|
eleqtrd |
|- ( ( ph /\ ( i e. dom I /\ x e. ( I ` i ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
181 |
177 180
|
jca |
|- ( ( ph /\ ( i e. dom I /\ x e. ( I ` i ) ) ) -> ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
182 |
|
id |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ..^ M ) ) |
183 |
182 52
|
eleqtrrdi |
|- ( i e. ( 0 ..^ M ) -> i e. dom I ) |
184 |
183
|
ad2antrl |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> i e. dom I ) |
185 |
|
simprr |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
186 |
136
|
eqcomd |
|- ( i e. ( 0 ..^ M ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( I ` i ) ) |
187 |
186
|
ad2antrl |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( I ` i ) ) |
188 |
185 187
|
eleqtrd |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. ( I ` i ) ) |
189 |
184 188
|
jca |
|- ( ( ph /\ ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( i e. dom I /\ x e. ( I ` i ) ) ) |
190 |
181 189
|
impbida |
|- ( ph -> ( ( i e. dom I /\ x e. ( I ` i ) ) <-> ( i e. ( 0 ..^ M ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
191 |
190
|
rexbidv2 |
|- ( ph -> ( E. i e. dom I x e. ( I ` i ) <-> E. i e. ( 0 ..^ M ) x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
192 |
191
|
ad2antrr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> ( E. i e. dom I x e. ( I ` i ) <-> E. i e. ( 0 ..^ M ) x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
193 |
176 192
|
mpbird |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> E. i e. dom I x e. ( I ` i ) ) |
194 |
193 47
|
sylibr |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> x e. U. ran I ) |
195 |
|
elun2 |
|- ( x e. U. ran I -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
196 |
194 195
|
syl |
|- ( ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) /\ -. x e. ran Q ) -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
197 |
159 196
|
pm2.61dan |
|- ( ( ph /\ x e. ( ( A [,] B ) i^i dom F ) ) -> x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
198 |
197
|
ralrimiva |
|- ( ph -> A. x e. ( ( A [,] B ) i^i dom F ) x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
199 |
|
dfss3 |
|- ( ( ( A [,] B ) i^i dom F ) C_ ( ( ran Q i^i dom F ) u. U. ran I ) <-> A. x e. ( ( A [,] B ) i^i dom F ) x e. ( ( ran Q i^i dom F ) u. U. ran I ) ) |
200 |
198 199
|
sylibr |
|- ( ph -> ( ( A [,] B ) i^i dom F ) C_ ( ( ran Q i^i dom F ) u. U. ran I ) ) |
201 |
28 35 37
|
syl2anc |
|- ( ph -> U. { ( ran Q i^i dom F ) , U. ran I } = ( ( ran Q i^i dom F ) u. U. ran I ) ) |
202 |
200 201
|
sseqtrrd |
|- ( ph -> ( ( A [,] B ) i^i dom F ) C_ U. { ( ran Q i^i dom F ) , U. ran I } ) |
203 |
19 77 153 202
|
ssfiunibd |
|- ( ph -> E. y e. RR A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) |
204 |
|
nfv |
|- F/ x ph |
205 |
|
nfra1 |
|- F/ x A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y |
206 |
204 205
|
nfan |
|- F/ x ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) |
207 |
1
|
sselda |
|- ( ( ph /\ x e. dom F ) -> x e. RR ) |
208 |
4
|
adantr |
|- ( ( ph /\ x e. dom F ) -> B e. RR ) |
209 |
208 207
|
resubcld |
|- ( ( ph /\ x e. dom F ) -> ( B - x ) e. RR ) |
210 |
4 3
|
resubcld |
|- ( ph -> ( B - A ) e. RR ) |
211 |
6 210
|
eqeltrid |
|- ( ph -> T e. RR ) |
212 |
211
|
adantr |
|- ( ( ph /\ x e. dom F ) -> T e. RR ) |
213 |
3 4
|
posdifd |
|- ( ph -> ( A < B <-> 0 < ( B - A ) ) ) |
214 |
5 213
|
mpbid |
|- ( ph -> 0 < ( B - A ) ) |
215 |
214 6
|
breqtrrdi |
|- ( ph -> 0 < T ) |
216 |
215
|
gt0ne0d |
|- ( ph -> T =/= 0 ) |
217 |
216
|
adantr |
|- ( ( ph /\ x e. dom F ) -> T =/= 0 ) |
218 |
209 212 217
|
redivcld |
|- ( ( ph /\ x e. dom F ) -> ( ( B - x ) / T ) e. RR ) |
219 |
218
|
flcld |
|- ( ( ph /\ x e. dom F ) -> ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) |
220 |
219
|
zred |
|- ( ( ph /\ x e. dom F ) -> ( |_ ` ( ( B - x ) / T ) ) e. RR ) |
221 |
220 212
|
remulcld |
|- ( ( ph /\ x e. dom F ) -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) e. RR ) |
222 |
207 221
|
readdcld |
|- ( ( ph /\ x e. dom F ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR ) |
223 |
17
|
fvmpt2 |
|- ( ( x e. RR /\ ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. RR ) -> ( E ` x ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
224 |
207 222 223
|
syl2anc |
|- ( ( ph /\ x e. dom F ) -> ( E ` x ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
225 |
224
|
fveq2d |
|- ( ( ph /\ x e. dom F ) -> ( F ` ( E ` x ) ) = ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
226 |
|
fvex |
|- ( |_ ` ( ( B - x ) / T ) ) e. _V |
227 |
|
eleq1 |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( k e. ZZ <-> ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) ) |
228 |
227
|
anbi2d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( ( ( ph /\ x e. dom F ) /\ k e. ZZ ) <-> ( ( ph /\ x e. dom F ) /\ ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) ) ) |
229 |
|
oveq1 |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( k x. T ) = ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) |
230 |
229
|
oveq2d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( x + ( k x. T ) ) = ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) |
231 |
230
|
fveq2d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) ) |
232 |
231
|
eqeq1d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) <-> ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) |
233 |
228 232
|
imbi12d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( ( ( ( ph /\ x e. dom F ) /\ k e. ZZ ) -> ( F ` ( x + ( k x. T ) ) ) = ( F ` x ) ) <-> ( ( ( ph /\ x e. dom F ) /\ ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) -> ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( F ` x ) ) ) ) |
234 |
226 233 15
|
vtocl |
|- ( ( ( ph /\ x e. dom F ) /\ ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) -> ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( F ` x ) ) |
235 |
219 234
|
mpdan |
|- ( ( ph /\ x e. dom F ) -> ( F ` ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( F ` x ) ) |
236 |
225 235
|
eqtr2d |
|- ( ( ph /\ x e. dom F ) -> ( F ` x ) = ( F ` ( E ` x ) ) ) |
237 |
236
|
fveq2d |
|- ( ( ph /\ x e. dom F ) -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` ( E ` x ) ) ) ) |
238 |
237
|
adantlr |
|- ( ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) /\ x e. dom F ) -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` ( E ` x ) ) ) ) |
239 |
|
fveq2 |
|- ( x = w -> ( F ` x ) = ( F ` w ) ) |
240 |
239
|
fveq2d |
|- ( x = w -> ( abs ` ( F ` x ) ) = ( abs ` ( F ` w ) ) ) |
241 |
240
|
breq1d |
|- ( x = w -> ( ( abs ` ( F ` x ) ) <_ y <-> ( abs ` ( F ` w ) ) <_ y ) ) |
242 |
241
|
cbvralvw |
|- ( A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y <-> A. w e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` w ) ) <_ y ) |
243 |
242
|
biimpi |
|- ( A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y -> A. w e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` w ) ) <_ y ) |
244 |
243
|
ad2antlr |
|- ( ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) /\ x e. dom F ) -> A. w e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` w ) ) <_ y ) |
245 |
|
iocssicc |
|- ( A (,] B ) C_ ( A [,] B ) |
246 |
3
|
adantr |
|- ( ( ph /\ x e. dom F ) -> A e. RR ) |
247 |
5
|
adantr |
|- ( ( ph /\ x e. dom F ) -> A < B ) |
248 |
|
id |
|- ( x = y -> x = y ) |
249 |
|
oveq2 |
|- ( x = y -> ( B - x ) = ( B - y ) ) |
250 |
249
|
oveq1d |
|- ( x = y -> ( ( B - x ) / T ) = ( ( B - y ) / T ) ) |
251 |
250
|
fveq2d |
|- ( x = y -> ( |_ ` ( ( B - x ) / T ) ) = ( |_ ` ( ( B - y ) / T ) ) ) |
252 |
251
|
oveq1d |
|- ( x = y -> ( ( |_ ` ( ( B - x ) / T ) ) x. T ) = ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) |
253 |
248 252
|
oveq12d |
|- ( x = y -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) = ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) |
254 |
253
|
cbvmptv |
|- ( x e. RR |-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) ) = ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) |
255 |
17 254
|
eqtri |
|- E = ( y e. RR |-> ( y + ( ( |_ ` ( ( B - y ) / T ) ) x. T ) ) ) |
256 |
246 208 247 6 255
|
fourierdlem4 |
|- ( ( ph /\ x e. dom F ) -> E : RR --> ( A (,] B ) ) |
257 |
256 207
|
ffvelrnd |
|- ( ( ph /\ x e. dom F ) -> ( E ` x ) e. ( A (,] B ) ) |
258 |
245 257
|
sselid |
|- ( ( ph /\ x e. dom F ) -> ( E ` x ) e. ( A [,] B ) ) |
259 |
230
|
eleq1d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( ( x + ( k x. T ) ) e. dom F <-> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. dom F ) ) |
260 |
228 259
|
imbi12d |
|- ( k = ( |_ ` ( ( B - x ) / T ) ) -> ( ( ( ( ph /\ x e. dom F ) /\ k e. ZZ ) -> ( x + ( k x. T ) ) e. dom F ) <-> ( ( ( ph /\ x e. dom F ) /\ ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. dom F ) ) ) |
261 |
226 260 14
|
vtocl |
|- ( ( ( ph /\ x e. dom F ) /\ ( |_ ` ( ( B - x ) / T ) ) e. ZZ ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. dom F ) |
262 |
219 261
|
mpdan |
|- ( ( ph /\ x e. dom F ) -> ( x + ( ( |_ ` ( ( B - x ) / T ) ) x. T ) ) e. dom F ) |
263 |
224 262
|
eqeltrd |
|- ( ( ph /\ x e. dom F ) -> ( E ` x ) e. dom F ) |
264 |
258 263
|
elind |
|- ( ( ph /\ x e. dom F ) -> ( E ` x ) e. ( ( A [,] B ) i^i dom F ) ) |
265 |
264
|
adantlr |
|- ( ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) /\ x e. dom F ) -> ( E ` x ) e. ( ( A [,] B ) i^i dom F ) ) |
266 |
|
fveq2 |
|- ( w = ( E ` x ) -> ( F ` w ) = ( F ` ( E ` x ) ) ) |
267 |
266
|
fveq2d |
|- ( w = ( E ` x ) -> ( abs ` ( F ` w ) ) = ( abs ` ( F ` ( E ` x ) ) ) ) |
268 |
267
|
breq1d |
|- ( w = ( E ` x ) -> ( ( abs ` ( F ` w ) ) <_ y <-> ( abs ` ( F ` ( E ` x ) ) ) <_ y ) ) |
269 |
268
|
rspccva |
|- ( ( A. w e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` w ) ) <_ y /\ ( E ` x ) e. ( ( A [,] B ) i^i dom F ) ) -> ( abs ` ( F ` ( E ` x ) ) ) <_ y ) |
270 |
244 265 269
|
syl2anc |
|- ( ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) /\ x e. dom F ) -> ( abs ` ( F ` ( E ` x ) ) ) <_ y ) |
271 |
238 270
|
eqbrtrd |
|- ( ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) /\ x e. dom F ) -> ( abs ` ( F ` x ) ) <_ y ) |
272 |
271
|
ex |
|- ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) -> ( x e. dom F -> ( abs ` ( F ` x ) ) <_ y ) ) |
273 |
206 272
|
ralrimi |
|- ( ( ph /\ A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y ) -> A. x e. dom F ( abs ` ( F ` x ) ) <_ y ) |
274 |
273
|
ex |
|- ( ph -> ( A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y -> A. x e. dom F ( abs ` ( F ` x ) ) <_ y ) ) |
275 |
274
|
reximdv |
|- ( ph -> ( E. y e. RR A. x e. ( ( A [,] B ) i^i dom F ) ( abs ` ( F ` x ) ) <_ y -> E. y e. RR A. x e. dom F ( abs ` ( F ` x ) ) <_ y ) ) |
276 |
203 275
|
mpd |
|- ( ph -> E. y e. RR A. x e. dom F ( abs ` ( F ` x ) ) <_ y ) |