Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem72.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem72.xre |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem72.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem72.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem72.v |
|- ( ph -> V e. ( P ` M ) ) |
6 |
|
fourierdlem72.dvcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) ) |
7 |
|
fourierdlem72.a |
|- ( ph -> A e. RR ) |
8 |
|
fourierdlem72.b |
|- ( ph -> B e. RR ) |
9 |
|
fourierdlem72.altb |
|- ( ph -> A < B ) |
10 |
|
fourierdlem72.ab |
|- ( ph -> ( A (,) B ) C_ ( -u _pi [,] _pi ) ) |
11 |
|
fourierdlem72.n0 |
|- ( ph -> -. 0 e. ( A [,] B ) ) |
12 |
|
fourierdlem72.c |
|- ( ph -> C e. RR ) |
13 |
|
fourierdlem72.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
14 |
|
fourierdlem72.u |
|- ( ph -> U e. ( 0 ..^ M ) ) |
15 |
|
fourierdlem72.abss |
|- ( ph -> ( A (,) B ) C_ ( ( Q ` U ) (,) ( Q ` ( U + 1 ) ) ) ) |
16 |
|
fourierdlem72.h |
|- H = ( s e. ( A (,) B ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) |
17 |
|
fourierdlem72.k |
|- K = ( s e. ( A (,) B ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
18 |
|
fourierdlem72.o |
|- O = ( s e. ( A (,) B ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
19 |
|
ovex |
|- ( A (,) B ) e. _V |
20 |
19
|
a1i |
|- ( ph -> ( A (,) B ) e. _V ) |
21 |
1
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> F : RR --> RR ) |
22 |
2
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> X e. RR ) |
23 |
|
elioore |
|- ( s e. ( A (,) B ) -> s e. RR ) |
24 |
23
|
adantl |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
25 |
22 24
|
readdcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( X + s ) e. RR ) |
26 |
21 25
|
ffvelrnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. RR ) |
27 |
12
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. RR ) |
28 |
26 27
|
resubcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. RR ) |
29 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
30 |
29
|
sseli |
|- ( s e. ( A (,) B ) -> s e. ( A [,] B ) ) |
31 |
30
|
ad2antlr |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> s e. ( A [,] B ) ) |
32 |
|
id |
|- ( s =/= 0 -> s =/= 0 ) |
33 |
32
|
necon1bi |
|- ( -. s =/= 0 -> s = 0 ) |
34 |
33
|
eleq1d |
|- ( -. s =/= 0 -> ( s e. ( A [,] B ) <-> 0 e. ( A [,] B ) ) ) |
35 |
34
|
adantl |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> ( s e. ( A [,] B ) <-> 0 e. ( A [,] B ) ) ) |
36 |
31 35
|
mpbid |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> 0 e. ( A [,] B ) ) |
37 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. ( A (,) B ) ) /\ -. s =/= 0 ) -> -. 0 e. ( A [,] B ) ) |
38 |
36 37
|
condan |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s =/= 0 ) |
39 |
28 24 38
|
redivcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. RR ) |
40 |
39 16
|
fmptd |
|- ( ph -> H : ( A (,) B ) --> RR ) |
41 |
40
|
ffvelrnda |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( H ` s ) e. RR ) |
42 |
|
2re |
|- 2 e. RR |
43 |
42
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. RR ) |
44 |
24
|
rehalfcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. RR ) |
45 |
44
|
resincld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. RR ) |
46 |
43 45
|
remulcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
47 |
|
2cnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 e. CC ) |
48 |
24
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC ) |
49 |
48
|
halfcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. CC ) |
50 |
49
|
sincld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
51 |
|
2ne0 |
|- 2 =/= 0 |
52 |
51
|
a1i |
|- ( ( ph /\ s e. ( A (,) B ) ) -> 2 =/= 0 ) |
53 |
10
|
sselda |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. ( -u _pi [,] _pi ) ) |
54 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
55 |
53 38 54
|
syl2anc |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
56 |
47 50 52 55
|
mulne0d |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
57 |
24 46 56
|
redivcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. RR ) |
58 |
57 17
|
fmptd |
|- ( ph -> K : ( A (,) B ) --> RR ) |
59 |
58
|
ffvelrnda |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( K ` s ) e. RR ) |
60 |
40
|
feqmptd |
|- ( ph -> H = ( s e. ( A (,) B ) |-> ( H ` s ) ) ) |
61 |
58
|
feqmptd |
|- ( ph -> K = ( s e. ( A (,) B ) |-> ( K ` s ) ) ) |
62 |
20 41 59 60 61
|
offval2 |
|- ( ph -> ( H oF x. K ) = ( s e. ( A (,) B ) |-> ( ( H ` s ) x. ( K ` s ) ) ) ) |
63 |
18 62
|
eqtr4id |
|- ( ph -> O = ( H oF x. K ) ) |
64 |
63
|
oveq2d |
|- ( ph -> ( RR _D O ) = ( RR _D ( H oF x. K ) ) ) |
65 |
|
reelprrecn |
|- RR e. { RR , CC } |
66 |
65
|
a1i |
|- ( ph -> RR e. { RR , CC } ) |
67 |
26
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( F ` ( X + s ) ) e. CC ) |
68 |
12
|
recnd |
|- ( ph -> C e. CC ) |
69 |
68
|
adantr |
|- ( ( ph /\ s e. ( A (,) B ) ) -> C e. CC ) |
70 |
67 69
|
subcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
71 |
|
ioossre |
|- ( A (,) B ) C_ RR |
72 |
71
|
a1i |
|- ( ph -> ( A (,) B ) C_ RR ) |
73 |
72
|
sselda |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. RR ) |
74 |
73
|
recnd |
|- ( ( ph /\ s e. ( A (,) B ) ) -> s e. CC ) |
75 |
70 74 38
|
divcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. CC ) |
76 |
75 16
|
fmptd |
|- ( ph -> H : ( A (,) B ) --> CC ) |
77 |
74
|
halfcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / 2 ) e. CC ) |
78 |
77
|
sincld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
79 |
47 78
|
mulcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
80 |
74 79 56
|
divcld |
|- ( ( ph /\ s e. ( A (,) B ) ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC ) |
81 |
80 17
|
fmptd |
|- ( ph -> K : ( A (,) B ) --> CC ) |
82 |
|
ax-resscn |
|- RR C_ CC |
83 |
82
|
a1i |
|- ( ph -> RR C_ CC ) |
84 |
|
ssid |
|- CC C_ CC |
85 |
84
|
a1i |
|- ( ph -> CC C_ CC ) |
86 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
87 |
83 85 86
|
syl2anc |
|- ( ph -> ( ( A (,) B ) -cn-> RR ) C_ ( ( A (,) B ) -cn-> CC ) ) |
88 |
38
|
nelrdva |
|- ( ph -> -. 0 e. ( A (,) B ) ) |
89 |
1 83
|
fssd |
|- ( ph -> F : RR --> CC ) |
90 |
|
ssid |
|- RR C_ RR |
91 |
90
|
a1i |
|- ( ph -> RR C_ RR ) |
92 |
|
ioossre |
|- ( ( X + A ) (,) ( X + B ) ) C_ RR |
93 |
92
|
a1i |
|- ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ RR ) |
94 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
95 |
94
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
96 |
94 95
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( X + A ) (,) ( X + B ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) ) |
97 |
83 89 91 93 96
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) ) |
98 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) = ( ( X + A ) (,) ( X + B ) ) |
99 |
98
|
reseq2i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) |
100 |
97 99
|
eqtrdi |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) ) |
101 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
102 |
4 101
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
103 |
5 102
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
104 |
103
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
105 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
106 |
104 105
|
syl |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
107 |
|
elfzofz |
|- ( U e. ( 0 ..^ M ) -> U e. ( 0 ... M ) ) |
108 |
14 107
|
syl |
|- ( ph -> U e. ( 0 ... M ) ) |
109 |
106 108
|
ffvelrnd |
|- ( ph -> ( V ` U ) e. RR ) |
110 |
109
|
rexrd |
|- ( ph -> ( V ` U ) e. RR* ) |
111 |
|
fzofzp1 |
|- ( U e. ( 0 ..^ M ) -> ( U + 1 ) e. ( 0 ... M ) ) |
112 |
14 111
|
syl |
|- ( ph -> ( U + 1 ) e. ( 0 ... M ) ) |
113 |
106 112
|
ffvelrnd |
|- ( ph -> ( V ` ( U + 1 ) ) e. RR ) |
114 |
113
|
rexrd |
|- ( ph -> ( V ` ( U + 1 ) ) e. RR* ) |
115 |
|
pire |
|- _pi e. RR |
116 |
115
|
a1i |
|- ( ph -> _pi e. RR ) |
117 |
116
|
renegcld |
|- ( ph -> -u _pi e. RR ) |
118 |
117 116 2 3 4 5 108 13
|
fourierdlem13 |
|- ( ph -> ( ( Q ` U ) = ( ( V ` U ) - X ) /\ ( V ` U ) = ( X + ( Q ` U ) ) ) ) |
119 |
118
|
simprd |
|- ( ph -> ( V ` U ) = ( X + ( Q ` U ) ) ) |
120 |
118
|
simpld |
|- ( ph -> ( Q ` U ) = ( ( V ` U ) - X ) ) |
121 |
109 2
|
resubcld |
|- ( ph -> ( ( V ` U ) - X ) e. RR ) |
122 |
120 121
|
eqeltrd |
|- ( ph -> ( Q ` U ) e. RR ) |
123 |
117 116 2 3 4 5 112 13
|
fourierdlem13 |
|- ( ph -> ( ( Q ` ( U + 1 ) ) = ( ( V ` ( U + 1 ) ) - X ) /\ ( V ` ( U + 1 ) ) = ( X + ( Q ` ( U + 1 ) ) ) ) ) |
124 |
123
|
simpld |
|- ( ph -> ( Q ` ( U + 1 ) ) = ( ( V ` ( U + 1 ) ) - X ) ) |
125 |
113 2
|
resubcld |
|- ( ph -> ( ( V ` ( U + 1 ) ) - X ) e. RR ) |
126 |
124 125
|
eqeltrd |
|- ( ph -> ( Q ` ( U + 1 ) ) e. RR ) |
127 |
122 126 7 8 9 15
|
fourierdlem10 |
|- ( ph -> ( ( Q ` U ) <_ A /\ B <_ ( Q ` ( U + 1 ) ) ) ) |
128 |
127
|
simpld |
|- ( ph -> ( Q ` U ) <_ A ) |
129 |
122 7 2 128
|
leadd2dd |
|- ( ph -> ( X + ( Q ` U ) ) <_ ( X + A ) ) |
130 |
119 129
|
eqbrtrd |
|- ( ph -> ( V ` U ) <_ ( X + A ) ) |
131 |
127
|
simprd |
|- ( ph -> B <_ ( Q ` ( U + 1 ) ) ) |
132 |
8 126 2 131
|
leadd2dd |
|- ( ph -> ( X + B ) <_ ( X + ( Q ` ( U + 1 ) ) ) ) |
133 |
123
|
simprd |
|- ( ph -> ( V ` ( U + 1 ) ) = ( X + ( Q ` ( U + 1 ) ) ) ) |
134 |
132 133
|
breqtrrd |
|- ( ph -> ( X + B ) <_ ( V ` ( U + 1 ) ) ) |
135 |
|
ioossioo |
|- ( ( ( ( V ` U ) e. RR* /\ ( V ` ( U + 1 ) ) e. RR* ) /\ ( ( V ` U ) <_ ( X + A ) /\ ( X + B ) <_ ( V ` ( U + 1 ) ) ) ) -> ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |
136 |
110 114 130 134 135
|
syl22anc |
|- ( ph -> ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |
137 |
136
|
resabs1d |
|- ( ph -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) ) |
138 |
137
|
eqcomd |
|- ( ph -> ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) = ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) ) |
139 |
14
|
ancli |
|- ( ph -> ( ph /\ U e. ( 0 ..^ M ) ) ) |
140 |
|
eleq1 |
|- ( i = U -> ( i e. ( 0 ..^ M ) <-> U e. ( 0 ..^ M ) ) ) |
141 |
140
|
anbi2d |
|- ( i = U -> ( ( ph /\ i e. ( 0 ..^ M ) ) <-> ( ph /\ U e. ( 0 ..^ M ) ) ) ) |
142 |
|
fveq2 |
|- ( i = U -> ( V ` i ) = ( V ` U ) ) |
143 |
|
oveq1 |
|- ( i = U -> ( i + 1 ) = ( U + 1 ) ) |
144 |
143
|
fveq2d |
|- ( i = U -> ( V ` ( i + 1 ) ) = ( V ` ( U + 1 ) ) ) |
145 |
142 144
|
oveq12d |
|- ( i = U -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) = ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |
146 |
145
|
reseq2d |
|- ( i = U -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) ) |
147 |
145
|
oveq1d |
|- ( i = U -> ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) = ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) |
148 |
146 147
|
eleq12d |
|- ( i = U -> ( ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) <-> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) ) |
149 |
141 148
|
imbi12d |
|- ( i = U -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> RR ) ) <-> ( ( ph /\ U e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) ) ) |
150 |
149 6
|
vtoclg |
|- ( U e. ( 0 ..^ M ) -> ( ( ph /\ U e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) ) |
151 |
14 139 150
|
sylc |
|- ( ph -> ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) ) |
152 |
|
rescncf |
|- ( ( ( X + A ) (,) ( X + B ) ) C_ ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) e. ( ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) -cn-> RR ) -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) ) |
153 |
136 151 152
|
sylc |
|- ( ph -> ( ( ( RR _D F ) |` ( ( V ` U ) (,) ( V ` ( U + 1 ) ) ) ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) |
154 |
138 153
|
eqeltrd |
|- ( ph -> ( ( RR _D F ) |` ( ( X + A ) (,) ( X + B ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) |
155 |
100 154
|
eqeltrd |
|- ( ph -> ( RR _D ( F |` ( ( X + A ) (,) ( X + B ) ) ) ) e. ( ( ( X + A ) (,) ( X + B ) ) -cn-> RR ) ) |
156 |
1 2 7 8 88 155 12 16
|
fourierdlem59 |
|- ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> RR ) ) |
157 |
87 156
|
sseldd |
|- ( ph -> ( RR _D H ) e. ( ( A (,) B ) -cn-> CC ) ) |
158 |
|
iooretop |
|- ( A (,) B ) e. ( topGen ` ran (,) ) |
159 |
158
|
a1i |
|- ( ph -> ( A (,) B ) e. ( topGen ` ran (,) ) ) |
160 |
17 10 88 159
|
fourierdlem58 |
|- ( ph -> ( RR _D K ) e. ( ( A (,) B ) -cn-> RR ) ) |
161 |
87 160
|
sseldd |
|- ( ph -> ( RR _D K ) e. ( ( A (,) B ) -cn-> CC ) ) |
162 |
66 76 81 157 161
|
dvmulcncf |
|- ( ph -> ( RR _D ( H oF x. K ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
163 |
64 162
|
eqeltrd |
|- ( ph -> ( RR _D O ) e. ( ( A (,) B ) -cn-> CC ) ) |