Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem73.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem73.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem73.f |
|- ( ph -> F : ( A [,] B ) --> CC ) |
4 |
|
fourierdlem73.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem73.qf |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
6 |
|
fourierdlem73.q0 |
|- ( ph -> ( Q ` 0 ) = A ) |
7 |
|
fourierdlem73.qm |
|- ( ph -> ( Q ` M ) = B ) |
8 |
|
fourierdlem73.qilt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
9 |
|
fourierdlem73.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
10 |
|
fourierdlem73.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
11 |
|
fourierdlem73.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
12 |
|
fourierdlem73.g |
|- G = ( RR _D F ) |
13 |
|
fourierdlem73.gcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
14 |
|
fourierdlem73.gbd |
|- ( ph -> E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
15 |
|
fourierdlem73.s |
|- S = ( r e. RR+ |-> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
16 |
|
fourierdlem73.d |
|- D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
17 |
|
cncff |
|- ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
18 |
13 17
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
19 |
|
ax-resscn |
|- RR C_ CC |
20 |
19
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
21 |
1 2
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
22 |
5 21
|
fssd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
23 |
22
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
24 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
25 |
24
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
26 |
23 25
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
27 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
28 |
27
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
29 |
23 28
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
30 |
26 29
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ RR ) |
31 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) C_ CC |
32 |
31 11
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. CC ) |
33 |
32
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> R e. CC ) |
34 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) C_ CC |
35 |
34 10
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. CC ) |
36 |
35
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> L e. CC ) |
37 |
3
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC ) |
38 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A e. RR ) |
39 |
2
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> B e. RR ) |
40 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
41 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
42 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
43 |
|
eliccre |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
44 |
40 41 42 43
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
45 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
46 |
45
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
47 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
48 |
47
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
49 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
50 |
49 25
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( A [,] B ) ) |
51 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` i ) e. ( A [,] B ) ) -> A <_ ( Q ` i ) ) |
52 |
46 48 50 51
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A <_ ( Q ` i ) ) |
53 |
52
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A <_ ( Q ` i ) ) |
54 |
40
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
55 |
41
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
56 |
|
iccgelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
57 |
54 55 42 56
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
58 |
38 40 44 53 57
|
letrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A <_ x ) |
59 |
|
iccleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
60 |
54 55 42 59
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
61 |
45
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
62 |
47
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
63 |
49 28
|
ffvelcdmd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
64 |
63
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) |
65 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( Q ` ( i + 1 ) ) e. ( A [,] B ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
66 |
61 62 64 65
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) <_ B ) |
67 |
44 41 39 60 66
|
letrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ B ) |
68 |
38 39 44 58 67
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
69 |
37 68
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
70 |
36 69
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) e. CC ) |
71 |
33 70
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) |
72 |
71 16
|
fmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
73 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
74 |
73
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
75 |
|
iccntr |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
76 |
26 29 75
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
77 |
20 30 72 74 73 76
|
dvresntr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( RR _D ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
78 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
79 |
78
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
80 |
79
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
81 |
|
fvres |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
82 |
80 81
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
83 |
80 71
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) |
84 |
16
|
fvmpt2 |
|- ( ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) /\ if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) e. CC ) -> ( D ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
85 |
80 83 84
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
86 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
87 |
80 54
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
88 |
80 55
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
89 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
90 |
|
ioogtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < x ) |
91 |
87 88 89 90
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < x ) |
92 |
86 91
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x =/= ( Q ` i ) ) |
93 |
92
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. x = ( Q ` i ) ) |
94 |
93
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
95 |
|
elioore |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
96 |
95
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
97 |
|
iooltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
98 |
87 88 89 97
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
99 |
96 98
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x =/= ( Q ` ( i + 1 ) ) ) |
100 |
99
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. x = ( Q ` ( i + 1 ) ) ) |
101 |
100
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
102 |
85 94 101
|
3eqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) = ( D ` x ) ) |
103 |
82 102
|
eqtr2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
104 |
103
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
105 |
|
ffn |
|- ( D : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC -> D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
106 |
72 105
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
107 |
|
ffn |
|- ( F : ( A [,] B ) --> CC -> F Fn ( A [,] B ) ) |
108 |
3 107
|
syl |
|- ( ph -> F Fn ( A [,] B ) ) |
109 |
108
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F Fn ( A [,] B ) ) |
110 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
111 |
46 48 49 110
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
112 |
|
fnssres |
|- ( ( F Fn ( A [,] B ) /\ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) -> ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
113 |
109 111 112
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
114 |
78
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
115 |
|
fvreseq |
|- ( ( ( D Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) /\ ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) Fn ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
116 |
106 113 114 115
|
syl21anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( D ` x ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
117 |
104 116
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
118 |
114
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
119 |
117 118
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
120 |
119
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( D |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
121 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : ( A [,] B ) --> CC ) |
122 |
21
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A [,] B ) C_ RR ) |
123 |
114 30
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
124 |
73 74
|
dvres |
|- ( ( ( RR C_ CC /\ F : ( A [,] B ) --> CC ) /\ ( ( A [,] B ) C_ RR /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
125 |
20 121 122 123 124
|
syl22anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
126 |
12
|
eqcomi |
|- ( RR _D F ) = G |
127 |
126
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D F ) = G ) |
128 |
|
iooretop |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) |
129 |
|
retop |
|- ( topGen ` ran (,) ) e. Top |
130 |
|
uniretop |
|- RR = U. ( topGen ` ran (,) ) |
131 |
130
|
isopn3 |
|- ( ( ( topGen ` ran (,) ) e. Top /\ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
132 |
129 123 131
|
sylancr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. ( topGen ` ran (,) ) <-> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
133 |
128 132
|
mpbii |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
134 |
127 133
|
reseq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
135 |
125 134
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
136 |
77 120 135
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
137 |
136
|
feq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D D ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC <-> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) ) |
138 |
18 137
|
mpbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
139 |
138
|
feqmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) ) |
140 |
139 136
|
eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
141 |
|
ioombl |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol |
142 |
141
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol ) |
143 |
26 29 8
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
144 |
|
volioo |
|- ( ( ( Q ` i ) e. RR /\ ( Q ` ( i + 1 ) ) e. RR /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) ) |
145 |
26 29 143 144
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) ) |
146 |
29 26
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) - ( Q ` i ) ) e. RR ) |
147 |
145 146
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. RR ) |
148 |
14
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
149 |
|
nfv |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) |
150 |
|
nfra1 |
|- F/ x A. x e. dom G ( abs ` ( G ` x ) ) <_ y |
151 |
149 150
|
nfan |
|- F/ x ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
152 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
153 |
|
fdm |
|- ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
154 |
18 153
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
155 |
154
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
156 |
152 155
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
157 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( G ` x ) ) |
158 |
156 157
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( G ` x ) ) |
159 |
158
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
160 |
159
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
161 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
162 |
|
ssdmres |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom G <-> dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
163 |
154 162
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom G ) |
164 |
163
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. dom G ) |
165 |
156 164
|
syldan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom G ) |
166 |
165
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> x e. dom G ) |
167 |
|
rsp |
|- ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> ( x e. dom G -> ( abs ` ( G ` x ) ) <_ y ) ) |
168 |
161 166 167
|
sylc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
169 |
168
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
170 |
160 169
|
eqbrtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
171 |
170
|
ex |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> ( x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
172 |
151 171
|
ralrimi |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
173 |
172
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) -> ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
174 |
173
|
reximdva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> E. y e. RR A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) ) |
175 |
148 174
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. dom ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ( abs ` ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) <_ y ) |
176 |
142 147 13 175
|
cnbdibl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. L^1 ) |
177 |
140 176
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. L^1 ) |
178 |
177
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. L^1 ) |
179 |
141
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) e. dom vol ) |
180 |
147
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( vol ` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. RR ) |
181 |
140 13
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
182 |
181
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( RR _D D ) ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
183 |
|
coscn |
|- cos e. ( CC -cn-> CC ) |
184 |
183
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> cos e. ( CC -cn-> CC ) ) |
185 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
186 |
185
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
187 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> r e. RR ) |
188 |
187
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> r e. CC ) |
189 |
|
ssid |
|- CC C_ CC |
190 |
189
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> CC C_ CC ) |
191 |
186 188 190
|
constcncfg |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
192 |
185
|
a1i |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
193 |
189
|
a1i |
|- ( ph -> CC C_ CC ) |
194 |
192 193
|
idcncfg |
|- ( ph -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
195 |
194
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
196 |
191 195
|
mulcncf |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
197 |
184 196
|
cncfmpt1f |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( cos ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
198 |
197
|
negcncfg |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> -u ( cos ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
199 |
182 198
|
mulcncf |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
200 |
|
nfv |
|- F/ x ( ph /\ i e. ( 0 ..^ M ) ) |
201 |
200 150
|
nfan |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
202 |
136
|
fveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( RR _D D ) ` x ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
203 |
202 157
|
sylan9eq |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) = ( G ` x ) ) |
204 |
203
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
205 |
204
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) = ( abs ` ( G ` x ) ) ) |
206 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) |
207 |
164
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. dom G ) |
208 |
206 207 167
|
sylc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` x ) ) <_ y ) |
209 |
205 208
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
210 |
209
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
211 |
201 210
|
ralrimi |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. dom G ( abs ` ( G ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
212 |
211
|
ex |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
213 |
212
|
reximdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. y e. RR A. x e. dom G ( abs ` ( G ` x ) ) <_ y -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) ) |
214 |
148 213
|
mpd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
215 |
214
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
216 |
|
eqidd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ) |
217 |
|
fveq2 |
|- ( x = z -> ( ( RR _D D ) ` x ) = ( ( RR _D D ) ` z ) ) |
218 |
|
eleq1w |
|- ( x = z -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
219 |
218
|
anbi2d |
|- ( x = z -> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) <-> ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) ) |
220 |
|
fveq2 |
|- ( x = z -> ( G ` x ) = ( G ` z ) ) |
221 |
217 220
|
eqeq12d |
|- ( x = z -> ( ( ( RR _D D ) ` x ) = ( G ` x ) <-> ( ( RR _D D ) ` z ) = ( G ` z ) ) ) |
222 |
219 221
|
imbi12d |
|- ( x = z -> ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) = ( G ` x ) ) <-> ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` z ) = ( G ` z ) ) ) ) |
223 |
222 203
|
chvarvv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` z ) = ( G ` z ) ) |
224 |
217 223
|
sylan9eqr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( RR _D D ) ` x ) = ( G ` z ) ) |
225 |
|
oveq2 |
|- ( x = z -> ( r x. x ) = ( r x. z ) ) |
226 |
225
|
fveq2d |
|- ( x = z -> ( cos ` ( r x. x ) ) = ( cos ` ( r x. z ) ) ) |
227 |
226
|
negeqd |
|- ( x = z -> -u ( cos ` ( r x. x ) ) = -u ( cos ` ( r x. z ) ) ) |
228 |
227
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> -u ( cos ` ( r x. x ) ) = -u ( cos ` ( r x. z ) ) ) |
229 |
224 228
|
oveq12d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
230 |
229
|
adantllr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ x = z ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
231 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
232 |
|
fvres |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) = ( G ` z ) ) |
233 |
232
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) = ( G ` z ) ) |
234 |
18
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` z ) e. CC ) |
235 |
233 234
|
eqeltrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( G ` z ) e. CC ) |
236 |
235
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( G ` z ) e. CC ) |
237 |
|
simpl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
238 |
|
elioore |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. RR ) |
239 |
238
|
adantl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
240 |
237 239
|
remulcld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. z ) e. RR ) |
241 |
240
|
recnd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. z ) e. CC ) |
242 |
241
|
coscld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( cos ` ( r x. z ) ) e. CC ) |
243 |
242
|
negcld |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. z ) ) e. CC ) |
244 |
243
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. z ) ) e. CC ) |
245 |
236 244
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) e. CC ) |
246 |
216 230 231 245
|
fvmptd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) = ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) |
247 |
246
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) = ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) ) |
248 |
247
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) = ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) ) |
249 |
245
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) e. RR ) |
250 |
249
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) e. RR ) |
251 |
236
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. RR ) |
252 |
251
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. RR ) |
253 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> y e. RR ) |
254 |
244
|
abscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) e. RR ) |
255 |
|
1red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 1 e. RR ) |
256 |
236
|
absge0d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 <_ ( abs ` ( G ` z ) ) ) |
257 |
242
|
absnegd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) = ( abs ` ( cos ` ( r x. z ) ) ) ) |
258 |
|
abscosbd |
|- ( ( r x. z ) e. RR -> ( abs ` ( cos ` ( r x. z ) ) ) <_ 1 ) |
259 |
240 258
|
syl |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( cos ` ( r x. z ) ) ) <_ 1 ) |
260 |
257 259
|
eqbrtrd |
|- ( ( r e. RR /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) <_ 1 ) |
261 |
260
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` -u ( cos ` ( r x. z ) ) ) <_ 1 ) |
262 |
254 255 251 256 261
|
lemul2ad |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( G ` z ) ) x. ( abs ` -u ( cos ` ( r x. z ) ) ) ) <_ ( ( abs ` ( G ` z ) ) x. 1 ) ) |
263 |
236 244
|
absmuld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) = ( ( abs ` ( G ` z ) ) x. ( abs ` -u ( cos ` ( r x. z ) ) ) ) ) |
264 |
251
|
recnd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) e. CC ) |
265 |
264
|
mulridd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( G ` z ) ) x. 1 ) = ( abs ` ( G ` z ) ) ) |
266 |
265
|
eqcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) = ( ( abs ` ( G ` z ) ) x. 1 ) ) |
267 |
262 263 266
|
3brtr4d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ ( abs ` ( G ` z ) ) ) |
268 |
267
|
ad4ant14 |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ ( abs ` ( G ` z ) ) ) |
269 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
270 |
|
nfra1 |
|- F/ x A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y |
271 |
200 270
|
nfan |
|- F/ x ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
272 |
204
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` x ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
273 |
272
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( G ` x ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
274 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
275 |
273 274
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( abs ` ( G ` x ) ) <_ y ) |
276 |
275
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> ( abs ` ( G ` x ) ) <_ y ) ) |
277 |
276
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> ( abs ` ( G ` x ) ) <_ y ) ) |
278 |
271 277
|
ralimdaa |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y ) ) |
279 |
269 278
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y ) |
280 |
220
|
fveq2d |
|- ( x = z -> ( abs ` ( G ` x ) ) = ( abs ` ( G ` z ) ) ) |
281 |
280
|
breq1d |
|- ( x = z -> ( ( abs ` ( G ` x ) ) <_ y <-> ( abs ` ( G ` z ) ) <_ y ) ) |
282 |
281
|
cbvralvw |
|- ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` x ) ) <_ y <-> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
283 |
279 282
|
sylib |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
284 |
283
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( G ` z ) ) <_ y ) |
285 |
284
|
r19.21bi |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( G ` z ) ) <_ y ) |
286 |
250 252 253 268 285
|
letrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( G ` z ) x. -u ( cos ` ( r x. z ) ) ) ) <_ y ) |
287 |
248 286
|
eqbrtrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
288 |
287
|
ralrimiva |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
289 |
138
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
290 |
289
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
291 |
|
simpl |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
292 |
95
|
adantl |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
293 |
291 292
|
remulcld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
294 |
293
|
recnd |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
295 |
294
|
coscld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( cos ` ( r x. x ) ) e. CC ) |
296 |
295
|
negcld |
|- ( ( r e. RR /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. x ) ) e. CC ) |
297 |
296
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u ( cos ` ( r x. x ) ) e. CC ) |
298 |
290 297
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC ) |
299 |
298
|
ralrimiva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC ) |
300 |
|
dmmptg |
|- ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) e. CC -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
301 |
299 300
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
302 |
301
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) = ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
303 |
288 302
|
raleqtrrdv |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) /\ A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) -> A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
304 |
303
|
ex |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) /\ y e. RR ) -> ( A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) ) |
305 |
304
|
reximdva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y -> E. y e. RR A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) ) |
306 |
215 305
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> E. y e. RR A. z e. dom ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ( abs ` ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) ` z ) ) <_ y ) |
307 |
179 180 199 306
|
cnbdibl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. L^1 ) |
308 |
307
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( RR _D D ) ` x ) x. -u ( cos ` ( r x. x ) ) ) ) e. L^1 ) |
309 |
289
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( RR _D D ) ` x ) e. CC ) |
310 |
|
simpr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> r e. CC ) |
311 |
185
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. CC ) |
312 |
311
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> x e. CC ) |
313 |
310 312
|
mulcld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> ( r x. x ) e. CC ) |
314 |
313
|
coscld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. CC ) -> ( cos ` ( r x. x ) ) e. CC ) |
315 |
293
|
ancoms |
|- ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ r e. RR ) -> ( r x. x ) e. RR ) |
316 |
|
abscosbd |
|- ( ( r x. x ) e. RR -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
317 |
315 316
|
syl |
|- ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
318 |
317
|
adantll |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. x ) ) ) <_ 1 ) |
319 |
16
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) ) |
320 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR ) |
321 |
8
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
322 |
|
eqcom |
|- ( ( Q ` ( i + 1 ) ) = x <-> x = ( Q ` ( i + 1 ) ) ) |
323 |
322
|
biimpri |
|- ( x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) = x ) |
324 |
323
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) = x ) |
325 |
321 324
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
326 |
320 325
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> x =/= ( Q ` i ) ) |
327 |
326
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> -. x = ( Q ` i ) ) |
328 |
327
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
329 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
330 |
329
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
331 |
328 330
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = L ) |
332 |
29
|
leidd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
333 |
26 29 29 143 332
|
eliccd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
334 |
319 331 333 10
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) = L ) |
335 |
334 35
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. CC ) |
336 |
335
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( D ` ( Q ` ( i + 1 ) ) ) e. CC ) |
337 |
|
eqid |
|- ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) = ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) |
338 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
339 |
338
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
340 |
26
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
341 |
29
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
342 |
|
lbicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
343 |
340 341 143 342
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
344 |
319 339 343 11
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) = R ) |
345 |
344 32
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( D ` ( Q ` i ) ) e. CC ) |
346 |
345
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( D ` ( Q ` i ) ) e. CC ) |
347 |
|
eqid |
|- ( abs ` ( D ` ( Q ` i ) ) ) = ( abs ` ( D ` ( Q ` i ) ) ) |
348 |
|
eqid |
|- S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x |
349 |
|
simpr |
|- ( ( ph /\ e e. RR+ ) -> e e. RR+ ) |
350 |
4
|
nnrpd |
|- ( ph -> M e. RR+ ) |
351 |
350
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> M e. RR+ ) |
352 |
349 351
|
rpdivcld |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. RR+ ) |
353 |
352
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( e / M ) e. RR+ ) |
354 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> r e. CC ) |
355 |
29
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
356 |
355
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( Q ` ( i + 1 ) ) e. CC ) |
357 |
354 356
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. CC ) |
358 |
357
|
coscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. CC ) |
359 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( Q ` ( i + 1 ) ) e. RR ) |
360 |
187 359
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. RR ) |
361 |
|
abscosbd |
|- ( ( r x. ( Q ` ( i + 1 ) ) ) e. RR -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
362 |
360 361
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
363 |
362
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) <_ 1 ) |
364 |
26
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
365 |
364
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( Q ` i ) e. CC ) |
366 |
354 365
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( r x. ( Q ` i ) ) e. CC ) |
367 |
366
|
coscld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. CC ) -> ( cos ` ( r x. ( Q ` i ) ) ) e. CC ) |
368 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( Q ` i ) e. RR ) |
369 |
187 368
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( r x. ( Q ` i ) ) e. RR ) |
370 |
|
abscosbd |
|- ( ( r x. ( Q ` i ) ) e. RR -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
371 |
369 370
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
372 |
371
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) /\ r e. RR ) -> ( abs ` ( cos ` ( r x. ( Q ` i ) ) ) ) <_ 1 ) |
373 |
|
fveq2 |
|- ( z = x -> ( ( RR _D D ) ` z ) = ( ( RR _D D ) ` x ) ) |
374 |
373
|
fveq2d |
|- ( z = x -> ( abs ` ( ( RR _D D ) ` z ) ) = ( abs ` ( ( RR _D D ) ` x ) ) ) |
375 |
374
|
cbvitgv |
|- S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x |
376 |
375
|
oveq2i |
|- ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) = ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) |
377 |
376
|
oveq1i |
|- ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) = ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) |
378 |
377
|
oveq1i |
|- ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) = ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) |
379 |
378
|
fveq2i |
|- ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) ) = ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) ) |
380 |
379
|
oveq1i |
|- ( ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` z ) ) _d z ) / ( e / M ) ) + 1 ) ) + 1 ) = ( ( |_ ` ( ( ( ( ( abs ` ( D ` ( Q ` ( i + 1 ) ) ) ) + ( abs ` ( D ` ( Q ` i ) ) ) ) + S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) _d x ) / ( e / M ) ) + 1 ) ) + 1 ) |
381 |
178 308 309 314 318 336 337 346 347 348 353 358 363 367 372 380
|
fourierdlem47 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) |
382 |
|
simplll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ph ) |
383 |
|
simpllr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> i e. ( 0 ..^ M ) ) |
384 |
|
elioore |
|- ( r e. ( m (,) +oo ) -> r e. RR ) |
385 |
384
|
adantl |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. RR ) |
386 |
|
0red |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 e. RR ) |
387 |
|
nnre |
|- ( m e. NN -> m e. RR ) |
388 |
387
|
adantr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m e. RR ) |
389 |
|
nngt0 |
|- ( m e. NN -> 0 < m ) |
390 |
389
|
adantr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 < m ) |
391 |
388
|
rexrd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m e. RR* ) |
392 |
|
pnfxr |
|- +oo e. RR* |
393 |
392
|
a1i |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> +oo e. RR* ) |
394 |
|
simpr |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. ( m (,) +oo ) ) |
395 |
|
ioogtlb |
|- ( ( m e. RR* /\ +oo e. RR* /\ r e. ( m (,) +oo ) ) -> m < r ) |
396 |
391 393 394 395
|
syl3anc |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> m < r ) |
397 |
386 388 385 390 396
|
lttrd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> 0 < r ) |
398 |
385 397
|
elrpd |
|- ( ( m e. NN /\ r e. ( m (,) +oo ) ) -> r e. RR+ ) |
399 |
398
|
adantll |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> r e. RR+ ) |
400 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` i ) e. RR ) |
401 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` ( i + 1 ) ) e. RR ) |
402 |
72
|
ffvelcdmda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
403 |
402
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
404 |
|
rpcn |
|- ( r e. RR+ -> r e. CC ) |
405 |
404
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
406 |
44
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
407 |
406
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
408 |
405 407
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
409 |
408
|
sincld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
410 |
403 409
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
411 |
400 401 410
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
412 |
143
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
413 |
72
|
feqmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) ) |
414 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
415 |
329 414
|
eqtr4d |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
416 |
415
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
417 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
418 |
417
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
419 |
54
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
420 |
55
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
421 |
44
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
422 |
26
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR ) |
423 |
44
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. RR ) |
424 |
57
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) <_ x ) |
425 |
|
neqne |
|- ( -. x = ( Q ` i ) -> x =/= ( Q ` i ) ) |
426 |
425
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x =/= ( Q ` i ) ) |
427 |
422 423 424 426
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) < x ) |
428 |
427
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
429 |
44
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
430 |
29
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
431 |
60
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
432 |
322
|
biimpi |
|- ( ( Q ` ( i + 1 ) ) = x -> x = ( Q ` ( i + 1 ) ) ) |
433 |
432
|
necon3bi |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
434 |
433
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
435 |
429 430 431 434
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
436 |
435
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
437 |
419 420 421 428 436
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
438 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
439 |
437 438
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
440 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
441 |
440
|
eqcomd |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( F ` x ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
442 |
441
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( F ` x ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
443 |
418 439 442
|
3eqtrrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
444 |
416 443
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
445 |
444
|
ifeq2da |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
446 |
445
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
447 |
319 413 446
|
3eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
448 |
|
eqid |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
449 |
200 448 26 29 9 10 11
|
cncfiooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
450 |
447 449
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( D ` x ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
451 |
413 450
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> D e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
452 |
451
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> D e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
453 |
|
eqid |
|- ( RR _D D ) = ( RR _D D ) |
454 |
136 13
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D D ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
455 |
454
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> ( RR _D D ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
456 |
214
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> E. y e. RR A. x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( abs ` ( ( RR _D D ) ` x ) ) <_ y ) |
457 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> r e. RR+ ) |
458 |
400 401 412 452 453 455 456 457
|
fourierdlem39 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
459 |
411 458
|
eqtr3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. RR+ ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
460 |
382 383 399 459
|
syl21anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) |
461 |
460
|
fveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) ) |
462 |
461
|
breq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) /\ r e. ( m (,) +oo ) ) -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
463 |
462
|
ralbidva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ m e. NN ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
464 |
463
|
rexbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
465 |
464
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` ( ( ( ( D ` ( Q ` ( i + 1 ) ) ) x. -u ( ( cos ` ( r x. ( Q ` ( i + 1 ) ) ) ) / r ) ) - ( ( D ` ( Q ` i ) ) x. -u ( ( cos ` ( r x. ( Q ` i ) ) ) / r ) ) ) - S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( ( RR _D D ) ` x ) x. -u ( ( cos ` ( r x. x ) ) / r ) ) _d x ) ) < ( e / M ) ) ) |
466 |
381 465
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ e e. RR+ ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
467 |
466
|
an32s |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
468 |
102
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) = ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) ) |
469 |
468
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
470 |
469
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
471 |
470
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
472 |
26
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( Q ` i ) e. RR ) |
473 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
474 |
402
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( D ` x ) e. CC ) |
475 |
384
|
recnd |
|- ( r e. ( m (,) +oo ) -> r e. CC ) |
476 |
475
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
477 |
406
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
478 |
476 477
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
479 |
478
|
sincld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
480 |
474 479
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
481 |
472 473 480
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
482 |
69
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
483 |
482 479
|
mulcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
484 |
472 473 483
|
itgioo |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
485 |
471 481 484
|
3eqtr3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
486 |
485
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
487 |
486
|
breq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ r e. ( m (,) +oo ) ) -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
488 |
487
|
ralbidva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
489 |
488
|
adantlr |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
490 |
489
|
rexbidv |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( D ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
491 |
467 490
|
mpbid |
|- ( ( ( ph /\ e e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
492 |
491
|
ralrimiva |
|- ( ( ph /\ e e. RR+ ) -> A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
493 |
492
|
ralrimiva |
|- ( ph -> A. e e. RR+ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
494 |
|
nfv |
|- F/ i ( ph /\ e e. RR+ ) |
495 |
|
nfra1 |
|- F/ i A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
496 |
494 495
|
nfan |
|- F/ i ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
497 |
|
nfv |
|- F/ r ( ph /\ e e. RR+ ) |
498 |
|
nfcv |
|- F/_ r ( 0 ..^ M ) |
499 |
|
nfcv |
|- F/_ r NN |
500 |
|
nfra1 |
|- F/ r A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
501 |
499 500
|
nfrexw |
|- F/ r E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
502 |
498 501
|
nfralw |
|- F/ r A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
503 |
497 502
|
nfan |
|- F/ r ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
504 |
|
nfmpt1 |
|- F/_ i ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) |
505 |
|
fzofi |
|- ( 0 ..^ M ) e. Fin |
506 |
505
|
a1i |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( 0 ..^ M ) e. Fin ) |
507 |
|
simpr |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
508 |
|
eqid |
|- { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } = { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } |
509 |
|
eqid |
|- ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) = ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) |
510 |
|
eqid |
|- sup ( ran ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) , RR , < ) = sup ( ran ( i e. ( 0 ..^ M ) |-> inf ( { m e. NN | A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) } , RR , < ) ) , RR , < ) |
511 |
496 503 504 506 507 508 509 510
|
fourierdlem31 |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
512 |
|
simpr |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
513 |
|
nfv |
|- F/ n ( ph /\ e e. RR+ ) |
514 |
|
nfre1 |
|- F/ n E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
515 |
513 514
|
nfan |
|- F/ n ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
516 |
|
nfv |
|- F/ r n e. NN |
517 |
|
nfra1 |
|- F/ r A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) |
518 |
497 516 517
|
nf3an |
|- F/ r ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
519 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ph ) |
520 |
|
elioore |
|- ( r e. ( n (,) +oo ) -> r e. RR ) |
521 |
520
|
adantl |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. RR ) |
522 |
|
0red |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 e. RR ) |
523 |
|
nnre |
|- ( n e. NN -> n e. RR ) |
524 |
523
|
adantr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n e. RR ) |
525 |
|
nngt0 |
|- ( n e. NN -> 0 < n ) |
526 |
525
|
adantr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 < n ) |
527 |
524
|
rexrd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n e. RR* ) |
528 |
392
|
a1i |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> +oo e. RR* ) |
529 |
|
simpr |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. ( n (,) +oo ) ) |
530 |
|
ioogtlb |
|- ( ( n e. RR* /\ +oo e. RR* /\ r e. ( n (,) +oo ) ) -> n < r ) |
531 |
527 528 529 530
|
syl3anc |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> n < r ) |
532 |
522 524 521 526 531
|
lttrd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> 0 < r ) |
533 |
521 532
|
elrpd |
|- ( ( n e. NN /\ r e. ( n (,) +oo ) ) -> r e. RR+ ) |
534 |
533
|
adantll |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> r e. RR+ ) |
535 |
1
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> A e. RR ) |
536 |
2
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> B e. RR ) |
537 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
538 |
537
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( F ` x ) e. CC ) |
539 |
404
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> r e. CC ) |
540 |
21
|
sselda |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
541 |
540
|
recnd |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. CC ) |
542 |
541
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> x e. CC ) |
543 |
539 542
|
mulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( r x. x ) e. CC ) |
544 |
543
|
sincld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
545 |
538 544
|
mulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( A [,] B ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
546 |
535 536 545
|
itgioo |
|- ( ( ph /\ r e. RR+ ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( A [,] B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
547 |
6
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
548 |
7
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
549 |
547 548
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
550 |
549
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
551 |
550
|
itgeq1d |
|- ( ( ph /\ r e. RR+ ) -> S. ( A [,] B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
552 |
|
0zd |
|- ( ( ph /\ r e. RR+ ) -> 0 e. ZZ ) |
553 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
554 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
555 |
554
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
556 |
553 555
|
eqtr4i |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
557 |
4 556
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
558 |
557
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
559 |
22
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> Q : ( 0 ... M ) --> RR ) |
560 |
8
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
561 |
|
simpr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
562 |
549
|
eqcomd |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
563 |
562
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( Q ` 0 ) [,] ( Q ` M ) ) = ( A [,] B ) ) |
564 |
561 563
|
eleqtrd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) ) |
565 |
564
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. ( A [,] B ) ) |
566 |
565 545
|
syldan |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
567 |
26
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
568 |
29
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
569 |
114 111
|
sstrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
570 |
121 569
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
571 |
570 9
|
eqeltrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
572 |
571
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
573 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
574 |
573
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> sin e. ( CC -cn-> CC ) ) |
575 |
185
|
a1i |
|- ( ( ph /\ r e. RR+ ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
576 |
404
|
adantl |
|- ( ( ph /\ r e. RR+ ) -> r e. CC ) |
577 |
189
|
a1i |
|- ( ( ph /\ r e. RR+ ) -> CC C_ CC ) |
578 |
575 576 577
|
constcncfg |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
579 |
194
|
adantr |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
580 |
578 579
|
mulcncf |
|- ( ( ph /\ r e. RR+ ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
581 |
580
|
adantr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
582 |
574 581
|
cncfmpt1f |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
583 |
572 582
|
mulcncf |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
584 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) |
585 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) |
586 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) |
587 |
3
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> F : ( A [,] B ) --> CC ) |
588 |
45
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
589 |
47
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
590 |
5
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
591 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
592 |
588 589 590 591 80
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
593 |
587 592
|
ffvelcdmd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
594 |
593
|
adantllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
595 |
576
|
ad2antrr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
596 |
311
|
adantl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
597 |
595 596
|
mulcld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
598 |
597
|
sincld |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
599 |
570
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
600 |
10 599
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
601 |
600
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
602 |
|
rpre |
|- ( r e. RR+ -> r e. RR ) |
603 |
602
|
adantr |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> r e. RR ) |
604 |
95
|
adantl |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
605 |
603 604
|
remulcld |
|- ( ( r e. RR+ /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
606 |
605
|
adantll |
|- ( ( ( ph /\ r e. RR+ ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. RR ) |
607 |
606
|
ad2ant2r |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) =/= ( r x. ( Q ` ( i + 1 ) ) ) ) ) -> ( r x. x ) e. RR ) |
608 |
|
recn |
|- ( y e. RR -> y e. CC ) |
609 |
608
|
sincld |
|- ( y e. RR -> ( sin ` y ) e. CC ) |
610 |
609
|
adantl |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ y e. RR ) -> ( sin ` y ) e. CC ) |
611 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) |
612 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) |
613 |
|
eqid |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) |
614 |
185
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
615 |
576
|
adantr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. CC ) |
616 |
568
|
recnd |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
617 |
611 614 615 616
|
constlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) limCC ( Q ` ( i + 1 ) ) ) ) |
618 |
614 612 616
|
idlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) limCC ( Q ` ( i + 1 ) ) ) ) |
619 |
611 612 613 595 596 617 618
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
620 |
|
eqid |
|- ( y e. CC |-> ( sin ` y ) ) = ( y e. CC |-> ( sin ` y ) ) |
621 |
|
sinf |
|- sin : CC --> CC |
622 |
621
|
a1i |
|- ( T. -> sin : CC --> CC ) |
623 |
622
|
feqmptd |
|- ( T. -> sin = ( y e. CC |-> ( sin ` y ) ) ) |
624 |
623 573
|
eqeltrrdi |
|- ( T. -> ( y e. CC |-> ( sin ` y ) ) e. ( CC -cn-> CC ) ) |
625 |
19
|
a1i |
|- ( T. -> RR C_ CC ) |
626 |
|
resincl |
|- ( y e. RR -> ( sin ` y ) e. RR ) |
627 |
626
|
adantl |
|- ( ( T. /\ y e. RR ) -> ( sin ` y ) e. RR ) |
628 |
620 624 625 625 627
|
cncfmptssg |
|- ( T. -> ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) ) |
629 |
628
|
mptru |
|- ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) |
630 |
629
|
a1i |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( y e. RR |-> ( sin ` y ) ) e. ( RR -cn-> RR ) ) |
631 |
602
|
ad2antlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. RR ) |
632 |
631 568
|
remulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` ( i + 1 ) ) ) e. RR ) |
633 |
|
fveq2 |
|- ( y = ( r x. ( Q ` ( i + 1 ) ) ) -> ( sin ` y ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
634 |
630 632 633
|
cnmptlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. ( ( y e. RR |-> ( sin ` y ) ) limCC ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
635 |
|
fveq2 |
|- ( y = ( r x. x ) -> ( sin ` y ) = ( sin ` ( r x. x ) ) ) |
636 |
|
fveq2 |
|- ( ( r x. x ) = ( r x. ( Q ` ( i + 1 ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
637 |
636
|
ad2antll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) = ( r x. ( Q ` ( i + 1 ) ) ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) |
638 |
607 610 619 634 635 637
|
limcco |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
639 |
584 585 586 594 598 601 638
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( L x. ( sin ` ( r x. ( Q ` ( i + 1 ) ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
640 |
570
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
641 |
11 640
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
642 |
641
|
adantlr |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( Q ` i ) ) ) |
643 |
606
|
ad2ant2r |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) =/= ( r x. ( Q ` i ) ) ) ) -> ( r x. x ) e. RR ) |
644 |
567
|
recnd |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
645 |
611 614 615 644
|
constlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> r e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> r ) limCC ( Q ` i ) ) ) |
646 |
614 612 644
|
idlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> x ) limCC ( Q ` i ) ) ) |
647 |
611 612 613 595 596 645 646
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` i ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( r x. x ) ) limCC ( Q ` i ) ) ) |
648 |
631 567
|
remulcld |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( r x. ( Q ` i ) ) e. RR ) |
649 |
|
fveq2 |
|- ( y = ( r x. ( Q ` i ) ) -> ( sin ` y ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
650 |
630 648 649
|
cnmptlimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` i ) ) ) e. ( ( y e. RR |-> ( sin ` y ) ) limCC ( r x. ( Q ` i ) ) ) ) |
651 |
|
fveq2 |
|- ( ( r x. x ) = ( r x. ( Q ` i ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
652 |
651
|
ad2antll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ ( r x. x ) = ( r x. ( Q ` i ) ) ) ) -> ( sin ` ( r x. x ) ) = ( sin ` ( r x. ( Q ` i ) ) ) ) |
653 |
643 610 647 650 635 652
|
limcco |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( sin ` ( r x. ( Q ` i ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( sin ` ( r x. x ) ) ) limCC ( Q ` i ) ) ) |
654 |
584 585 586 594 598 642 653
|
mullimc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( R x. ( sin ` ( r x. ( Q ` i ) ) ) ) e. ( ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) limCC ( Q ` i ) ) ) |
655 |
567 568 583 639 654
|
iblcncfioo |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
656 |
|
simpll |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ph /\ r e. RR+ ) ) |
657 |
68
|
adantllr |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
658 |
656 657 545
|
syl2anc |
|- ( ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
659 |
567 568 655 658
|
ibliooicc |
|- ( ( ( ph /\ r e. RR+ ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
660 |
552 558 559 560 566 659
|
itgspltprt |
|- ( ( ph /\ r e. RR+ ) -> S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
661 |
546 551 660
|
3eqtrd |
|- ( ( ph /\ r e. RR+ ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
662 |
519 534 661
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
663 |
505
|
a1i |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) e. Fin ) |
664 |
69
|
adantllr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
665 |
520
|
recnd |
|- ( r e. ( n (,) +oo ) -> r e. CC ) |
666 |
665
|
adantl |
|- ( ( ph /\ r e. ( n (,) +oo ) ) -> r e. CC ) |
667 |
666
|
ad2antrr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> r e. CC ) |
668 |
406
|
adantllr |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. CC ) |
669 |
667 668
|
mulcld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( r x. x ) e. CC ) |
670 |
669
|
sincld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( sin ` ( r x. x ) ) e. CC ) |
671 |
664 670
|
mulcld |
|- ( ( ( ( ph /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
672 |
671
|
adantl3r |
|- ( ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) e. CC ) |
673 |
|
simplll |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ph ) |
674 |
534
|
adantr |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> r e. RR+ ) |
675 |
|
simpr |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
676 |
673 674 675 659
|
syl21anc |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) ) e. L^1 ) |
677 |
672 676
|
itgcl |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
678 |
663 677
|
fsumcl |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
679 |
662 678
|
eqeltrd |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
680 |
679
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
681 |
680
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
682 |
681
|
abscld |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
683 |
677
|
abscld |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
684 |
663 683
|
fsumrecl |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
685 |
684
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
686 |
685
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
687 |
|
rpre |
|- ( e e. RR+ -> e e. RR ) |
688 |
687
|
ad2antlr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> e e. RR ) |
689 |
688
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> e e. RR ) |
690 |
662
|
fveq2d |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
691 |
663 677
|
fsumabs |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
692 |
690 691
|
eqbrtrd |
|- ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
693 |
692
|
adantllr |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
694 |
693
|
3adantl3 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) <_ sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
695 |
505
|
a1i |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) e. Fin ) |
696 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
697 |
4
|
nnzd |
|- ( ph -> M e. ZZ ) |
698 |
4
|
nngt0d |
|- ( ph -> 0 < M ) |
699 |
|
fzolb |
|- ( 0 e. ( 0 ..^ M ) <-> ( 0 e. ZZ /\ M e. ZZ /\ 0 < M ) ) |
700 |
696 697 698 699
|
syl3anbrc |
|- ( ph -> 0 e. ( 0 ..^ M ) ) |
701 |
|
ne0i |
|- ( 0 e. ( 0 ..^ M ) -> ( 0 ..^ M ) =/= (/) ) |
702 |
700 701
|
syl |
|- ( ph -> ( 0 ..^ M ) =/= (/) ) |
703 |
702
|
ad2antrr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) =/= (/) ) |
704 |
703
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( 0 ..^ M ) =/= (/) ) |
705 |
|
simp1l |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ph ) |
706 |
705
|
ad2antrr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ph ) |
707 |
|
simpll2 |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> n e. NN ) |
708 |
706 707
|
jca |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( ph /\ n e. NN ) ) |
709 |
|
simplr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> r e. ( n (,) +oo ) ) |
710 |
|
simpr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> j e. ( 0 ..^ M ) ) |
711 |
|
eleq1w |
|- ( i = j -> ( i e. ( 0 ..^ M ) <-> j e. ( 0 ..^ M ) ) ) |
712 |
711
|
anbi2d |
|- ( i = j -> ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) <-> ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) ) ) |
713 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
714 |
|
oveq1 |
|- ( i = j -> ( i + 1 ) = ( j + 1 ) ) |
715 |
714
|
fveq2d |
|- ( i = j -> ( Q ` ( i + 1 ) ) = ( Q ` ( j + 1 ) ) ) |
716 |
713 715
|
oveq12d |
|- ( i = j -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) = ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ) |
717 |
716
|
itgeq1d |
|- ( i = j -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
718 |
717
|
eleq1d |
|- ( i = j -> ( S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC <-> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) ) |
719 |
712 718
|
imbi12d |
|- ( i = j -> ( ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) <-> ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) ) ) |
720 |
719 677
|
chvarvv |
|- ( ( ( ( ph /\ n e. NN ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
721 |
708 709 710 720
|
syl21anc |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x e. CC ) |
722 |
721
|
abscld |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) e. RR ) |
723 |
352
|
rpred |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. RR ) |
724 |
723
|
3ad2ant1 |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( e / M ) e. RR ) |
725 |
724
|
ad2antrr |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( e / M ) e. RR ) |
726 |
|
simpll3 |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
727 |
|
rspa |
|- ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) -> A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
728 |
727
|
adantr |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
729 |
717
|
fveq2d |
|- ( i = j -> ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
730 |
729
|
breq1d |
|- ( i = j -> ( ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) ) |
731 |
730
|
cbvralvw |
|- ( A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) <-> A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
732 |
728 731
|
sylib |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
733 |
|
rspa |
|- ( ( A. j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
734 |
732 733
|
sylancom |
|- ( ( ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
735 |
726 709 710 734
|
syl21anc |
|- ( ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) /\ j e. ( 0 ..^ M ) ) -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) |
736 |
695 704 722 725 735
|
fsumlt |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < sum_ j e. ( 0 ..^ M ) ( e / M ) ) |
737 |
|
fveq2 |
|- ( j = i -> ( Q ` j ) = ( Q ` i ) ) |
738 |
|
oveq1 |
|- ( j = i -> ( j + 1 ) = ( i + 1 ) ) |
739 |
738
|
fveq2d |
|- ( j = i -> ( Q ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) |
740 |
737 739
|
oveq12d |
|- ( j = i -> ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) = ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
741 |
740
|
itgeq1d |
|- ( j = i -> S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
742 |
741
|
fveq2d |
|- ( j = i -> ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
743 |
742
|
cbvsumv |
|- sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) |
744 |
743
|
a1i |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` j ) [,] ( Q ` ( j + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) = sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) ) |
745 |
352
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> ( e / M ) e. CC ) |
746 |
|
fsumconst |
|- ( ( ( 0 ..^ M ) e. Fin /\ ( e / M ) e. CC ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) ) |
747 |
505 745 746
|
sylancr |
|- ( ( ph /\ e e. RR+ ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) ) |
748 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
749 |
|
hashfzo0 |
|- ( M e. NN0 -> ( # ` ( 0 ..^ M ) ) = M ) |
750 |
748 749
|
syl |
|- ( ph -> ( # ` ( 0 ..^ M ) ) = M ) |
751 |
750
|
oveq1d |
|- ( ph -> ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) = ( M x. ( e / M ) ) ) |
752 |
751
|
adantr |
|- ( ( ph /\ e e. RR+ ) -> ( ( # ` ( 0 ..^ M ) ) x. ( e / M ) ) = ( M x. ( e / M ) ) ) |
753 |
349
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> e e. CC ) |
754 |
351
|
rpcnd |
|- ( ( ph /\ e e. RR+ ) -> M e. CC ) |
755 |
351
|
rpne0d |
|- ( ( ph /\ e e. RR+ ) -> M =/= 0 ) |
756 |
753 754 755
|
divcan2d |
|- ( ( ph /\ e e. RR+ ) -> ( M x. ( e / M ) ) = e ) |
757 |
747 752 756
|
3eqtrd |
|- ( ( ph /\ e e. RR+ ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
758 |
757
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
759 |
758
|
3ad2antl1 |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ j e. ( 0 ..^ M ) ( e / M ) = e ) |
760 |
736 744 759
|
3brtr3d |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> sum_ i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
761 |
682 686 689 694 760
|
lelttrd |
|- ( ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) /\ r e. ( n (,) +oo ) ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
762 |
761
|
ex |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( r e. ( n (,) +oo ) -> ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
763 |
518 762
|
ralrimi |
|- ( ( ( ph /\ e e. RR+ ) /\ n e. NN /\ A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
764 |
763
|
3exp |
|- ( ( ph /\ e e. RR+ ) -> ( n e. NN -> ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) ) |
765 |
764
|
adantr |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( n e. NN -> ( A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) ) |
766 |
515 765
|
reximdai |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> ( E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
767 |
512 766
|
mpd |
|- ( ( ( ph /\ e e. RR+ ) /\ E. n e. NN A. r e. ( n (,) +oo ) A. i e. ( 0 ..^ M ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
768 |
511 767
|
syldan |
|- ( ( ( ph /\ e e. RR+ ) /\ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |
769 |
768
|
ex |
|- ( ( ph /\ e e. RR+ ) -> ( A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
770 |
769
|
ralimdva |
|- ( ph -> ( A. e e. RR+ A. i e. ( 0 ..^ M ) E. m e. NN A. r e. ( m (,) +oo ) ( abs ` S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < ( e / M ) -> A. e e. RR+ E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) ) |
771 |
493 770
|
mpd |
|- ( ph -> A. e e. RR+ E. n e. NN A. r e. ( n (,) +oo ) ( abs ` S. ( A (,) B ) ( ( F ` x ) x. ( sin ` ( r x. x ) ) ) _d x ) < e ) |