Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem74.xre |
|- ( ph -> X e. RR ) |
2 |
|
fourierdlem74.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
3 |
|
fourierdlem74.f |
|- ( ph -> F : RR --> RR ) |
4 |
|
fourierdlem74.x |
|- ( ph -> X e. ran V ) |
5 |
|
fourierdlem74.y |
|- ( ph -> Y e. RR ) |
6 |
|
fourierdlem74.w |
|- ( ph -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
7 |
|
fourierdlem74.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
8 |
|
fourierdlem74.m |
|- ( ph -> M e. NN ) |
9 |
|
fourierdlem74.v |
|- ( ph -> V e. ( P ` M ) ) |
10 |
|
fourierdlem74.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
11 |
|
fourierdlem74.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
12 |
|
fourierdlem74.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
13 |
|
fourierdlem74.g |
|- G = ( RR _D F ) |
14 |
|
fourierdlem74.gcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
15 |
|
fourierdlem74.e |
|- ( ph -> E e. ( ( G |` ( -oo (,) X ) ) limCC X ) ) |
16 |
|
fourierdlem74.a |
|- A = if ( ( V ` ( i + 1 ) ) = X , E , ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) |
17 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
18 |
|
pire |
|- _pi e. RR |
19 |
18
|
renegcli |
|- -u _pi e. RR |
20 |
19
|
a1i |
|- ( ph -> -u _pi e. RR ) |
21 |
20 1
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
22 |
18
|
a1i |
|- ( ph -> _pi e. RR ) |
23 |
22 1
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
24 |
21 23
|
iccssred |
|- ( ph -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
25 |
24
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
26 |
2 8 9
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
27 |
26
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
28 |
25 27
|
sseldd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. RR ) |
29 |
17 28
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
30 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( V ` i ) e. RR ) |
31 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> X e. RR ) |
32 |
2
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
33 |
8 32
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
34 |
9 33
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
35 |
34
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) |
36 |
35
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
37 |
36
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
38 |
|
eqcom |
|- ( ( V ` ( i + 1 ) ) = X <-> X = ( V ` ( i + 1 ) ) ) |
39 |
38
|
biimpi |
|- ( ( V ` ( i + 1 ) ) = X -> X = ( V ` ( i + 1 ) ) ) |
40 |
39
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> X = ( V ` ( i + 1 ) ) ) |
41 |
37 40
|
breqtrrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( V ` i ) < X ) |
42 |
|
ioossre |
|- ( ( V ` i ) (,) X ) C_ RR |
43 |
42
|
a1i |
|- ( ph -> ( ( V ` i ) (,) X ) C_ RR ) |
44 |
3 43
|
fssresd |
|- ( ph -> ( F |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR ) |
45 |
44
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( F |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR ) |
46 |
|
limcresi |
|- ( ( F |` ( -oo (,) X ) ) limCC X ) C_ ( ( ( F |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) |
47 |
46 6
|
sselid |
|- ( ph -> W e. ( ( ( F |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
48 |
47
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. ( ( ( F |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
49 |
|
mnfxr |
|- -oo e. RR* |
50 |
49
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo e. RR* ) |
51 |
29
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR* ) |
52 |
29
|
mnfltd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo < ( V ` i ) ) |
53 |
50 51 52
|
xrltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -oo <_ ( V ` i ) ) |
54 |
|
iooss1 |
|- ( ( -oo e. RR* /\ -oo <_ ( V ` i ) ) -> ( ( V ` i ) (,) X ) C_ ( -oo (,) X ) ) |
55 |
50 53 54
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) (,) X ) C_ ( -oo (,) X ) ) |
56 |
55
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) = ( F |` ( ( V ` i ) (,) X ) ) ) |
57 |
56
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) = ( ( F |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
58 |
48 57
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. ( ( F |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
59 |
58
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> W e. ( ( F |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
60 |
|
eqid |
|- ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) |
61 |
|
ax-resscn |
|- RR C_ CC |
62 |
61
|
a1i |
|- ( ph -> RR C_ CC ) |
63 |
3 62
|
fssd |
|- ( ph -> F : RR --> CC ) |
64 |
|
ssid |
|- RR C_ RR |
65 |
64
|
a1i |
|- ( ph -> RR C_ RR ) |
66 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
67 |
66
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
68 |
66 67
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( ( V ` i ) (,) X ) C_ RR ) ) -> ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( V ` i ) (,) X ) ) ) ) |
69 |
62 63 65 43 68
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( V ` i ) (,) X ) ) ) ) |
70 |
13
|
eqcomi |
|- ( RR _D F ) = G |
71 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( ( V ` i ) (,) X ) ) = ( ( V ` i ) (,) X ) |
72 |
70 71
|
reseq12i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( V ` i ) (,) X ) ) ) = ( G |` ( ( V ` i ) (,) X ) ) |
73 |
72
|
a1i |
|- ( ph -> ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( ( V ` i ) (,) X ) ) ) = ( G |` ( ( V ` i ) (,) X ) ) ) |
74 |
69 73
|
eqtrd |
|- ( ph -> ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = ( G |` ( ( V ` i ) (,) X ) ) ) |
75 |
74
|
dmeqd |
|- ( ph -> dom ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = dom ( G |` ( ( V ` i ) (,) X ) ) ) |
76 |
75
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> dom ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = dom ( G |` ( ( V ` i ) (,) X ) ) ) |
77 |
14
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
78 |
|
oveq2 |
|- ( ( V ` ( i + 1 ) ) = X -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) = ( ( V ` i ) (,) X ) ) |
79 |
78
|
reseq2d |
|- ( ( V ` ( i + 1 ) ) = X -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( G |` ( ( V ` i ) (,) X ) ) ) |
80 |
79 78
|
feq12d |
|- ( ( V ` ( i + 1 ) ) = X -> ( ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR <-> ( G |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR ) ) |
81 |
80
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR <-> ( G |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR ) ) |
82 |
77 81
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( G |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR ) |
83 |
|
fdm |
|- ( ( G |` ( ( V ` i ) (,) X ) ) : ( ( V ` i ) (,) X ) --> RR -> dom ( G |` ( ( V ` i ) (,) X ) ) = ( ( V ` i ) (,) X ) ) |
84 |
82 83
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> dom ( G |` ( ( V ` i ) (,) X ) ) = ( ( V ` i ) (,) X ) ) |
85 |
76 84
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> dom ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) = ( ( V ` i ) (,) X ) ) |
86 |
|
limcresi |
|- ( ( G |` ( -oo (,) X ) ) limCC X ) C_ ( ( ( G |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) |
87 |
55
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) = ( G |` ( ( V ` i ) (,) X ) ) ) |
88 |
87
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( -oo (,) X ) ) |` ( ( V ` i ) (,) X ) ) limCC X ) = ( ( G |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
89 |
86 88
|
sseqtrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( -oo (,) X ) ) limCC X ) C_ ( ( G |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
90 |
15
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E e. ( ( G |` ( -oo (,) X ) ) limCC X ) ) |
91 |
89 90
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E e. ( ( G |` ( ( V ` i ) (,) X ) ) limCC X ) ) |
92 |
69 73
|
eqtr2d |
|- ( ph -> ( G |` ( ( V ` i ) (,) X ) ) = ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) ) |
93 |
92
|
oveq1d |
|- ( ph -> ( ( G |` ( ( V ` i ) (,) X ) ) limCC X ) = ( ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) limCC X ) ) |
94 |
93
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( ( V ` i ) (,) X ) ) limCC X ) = ( ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) limCC X ) ) |
95 |
91 94
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E e. ( ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) limCC X ) ) |
96 |
95
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> E e. ( ( RR _D ( F |` ( ( V ` i ) (,) X ) ) ) limCC X ) ) |
97 |
|
eqid |
|- ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) = ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) |
98 |
|
oveq2 |
|- ( x = s -> ( X + x ) = ( X + s ) ) |
99 |
98
|
fveq2d |
|- ( x = s -> ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + x ) ) = ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) ) |
100 |
99
|
oveq1d |
|- ( x = s -> ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + x ) ) - W ) = ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) ) |
101 |
100
|
cbvmptv |
|- ( x e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + x ) ) - W ) ) = ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) ) |
102 |
|
id |
|- ( x = s -> x = s ) |
103 |
102
|
cbvmptv |
|- ( x e. ( ( ( V ` i ) - X ) (,) 0 ) |-> x ) = ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> s ) |
104 |
30 31 41 45 59 60 85 96 97 101 103
|
fourierdlem60 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> E e. ( ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) limCC 0 ) ) |
105 |
|
iftrue |
|- ( ( V ` ( i + 1 ) ) = X -> if ( ( V ` ( i + 1 ) ) = X , E , ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) = E ) |
106 |
16 105
|
syl5eq |
|- ( ( V ` ( i + 1 ) ) = X -> A = E ) |
107 |
106
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> A = E ) |
108 |
7
|
reseq1i |
|- ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
109 |
108
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
110 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
111 |
19
|
rexri |
|- -u _pi e. RR* |
112 |
111
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
113 |
18
|
rexri |
|- _pi e. RR* |
114 |
113
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
115 |
19
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi e. RR ) |
116 |
18
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> _pi e. RR ) |
117 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
118 |
28 117
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. RR ) |
119 |
20
|
recnd |
|- ( ph -> -u _pi e. CC ) |
120 |
1
|
recnd |
|- ( ph -> X e. CC ) |
121 |
119 120
|
pncand |
|- ( ph -> ( ( -u _pi + X ) - X ) = -u _pi ) |
122 |
121
|
eqcomd |
|- ( ph -> -u _pi = ( ( -u _pi + X ) - X ) ) |
123 |
122
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi = ( ( -u _pi + X ) - X ) ) |
124 |
21
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( -u _pi + X ) e. RR ) |
125 |
23
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( _pi + X ) e. RR ) |
126 |
|
elicc2 |
|- ( ( ( -u _pi + X ) e. RR /\ ( _pi + X ) e. RR ) -> ( ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) <-> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) ) |
127 |
124 125 126
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) <-> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) ) |
128 |
27 127
|
mpbid |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) |
129 |
128
|
simp2d |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( -u _pi + X ) <_ ( V ` i ) ) |
130 |
124 28 117 129
|
lesub1dd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( -u _pi + X ) - X ) <_ ( ( V ` i ) - X ) ) |
131 |
123 130
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi <_ ( ( V ` i ) - X ) ) |
132 |
128
|
simp3d |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) <_ ( _pi + X ) ) |
133 |
28 125 117 132
|
lesub1dd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) <_ ( ( _pi + X ) - X ) ) |
134 |
116
|
recnd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> _pi e. CC ) |
135 |
120
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. CC ) |
136 |
134 135
|
pncand |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( _pi + X ) - X ) = _pi ) |
137 |
133 136
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) <_ _pi ) |
138 |
115 116 118 131 137
|
eliccd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. ( -u _pi [,] _pi ) ) |
139 |
138 11
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
140 |
139
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
141 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
142 |
112 114 140 141
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
143 |
110 142
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
144 |
143
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) ) |
145 |
144
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) ) |
146 |
17
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
147 |
17 118
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
148 |
11
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
149 |
146 147 148
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
150 |
149
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
151 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
152 |
151
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
153 |
152
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
154 |
11 153
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
155 |
154
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
156 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
157 |
156
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
158 |
157
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
159 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
160 |
159
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
161 |
34
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
162 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
163 |
161 162
|
syl |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
164 |
163
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
165 |
164 160
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
166 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
167 |
165 166
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
168 |
155 158 160 167
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
169 |
168
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
170 |
|
oveq1 |
|- ( ( V ` ( i + 1 ) ) = X -> ( ( V ` ( i + 1 ) ) - X ) = ( X - X ) ) |
171 |
170
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( ( V ` ( i + 1 ) ) - X ) = ( X - X ) ) |
172 |
120
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> X e. CC ) |
173 |
172
|
subidd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( X - X ) = 0 ) |
174 |
17 173
|
sylanl2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( X - X ) = 0 ) |
175 |
169 171 174
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( Q ` ( i + 1 ) ) = 0 ) |
176 |
150 175
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( ( ( V ` i ) - X ) (,) 0 ) ) |
177 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ s = 0 ) -> s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
178 |
8
|
adantr |
|- ( ( ph /\ s = 0 ) -> M e. NN ) |
179 |
20 22 1 2 12 8 9 11
|
fourierdlem14 |
|- ( ph -> Q e. ( O ` M ) ) |
180 |
179
|
adantr |
|- ( ( ph /\ s = 0 ) -> Q e. ( O ` M ) ) |
181 |
|
simpr |
|- ( ( ph /\ s = 0 ) -> s = 0 ) |
182 |
|
ffn |
|- ( V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) -> V Fn ( 0 ... M ) ) |
183 |
|
fvelrnb |
|- ( V Fn ( 0 ... M ) -> ( X e. ran V <-> E. i e. ( 0 ... M ) ( V ` i ) = X ) ) |
184 |
26 182 183
|
3syl |
|- ( ph -> ( X e. ran V <-> E. i e. ( 0 ... M ) ( V ` i ) = X ) ) |
185 |
4 184
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( V ` i ) = X ) |
186 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
187 |
11
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. ( -u _pi [,] _pi ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
188 |
186 138 187
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
189 |
188
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
190 |
|
oveq1 |
|- ( ( V ` i ) = X -> ( ( V ` i ) - X ) = ( X - X ) ) |
191 |
190
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( ( V ` i ) - X ) = ( X - X ) ) |
192 |
120
|
subidd |
|- ( ph -> ( X - X ) = 0 ) |
193 |
192
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( X - X ) = 0 ) |
194 |
189 191 193
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( Q ` i ) = 0 ) |
195 |
194
|
ex |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) = X -> ( Q ` i ) = 0 ) ) |
196 |
195
|
reximdva |
|- ( ph -> ( E. i e. ( 0 ... M ) ( V ` i ) = X -> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
197 |
185 196
|
mpd |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) |
198 |
118 11
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
199 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
200 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( 0 e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
201 |
198 199 200
|
3syl |
|- ( ph -> ( 0 e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
202 |
197 201
|
mpbird |
|- ( ph -> 0 e. ran Q ) |
203 |
202
|
adantr |
|- ( ( ph /\ s = 0 ) -> 0 e. ran Q ) |
204 |
181 203
|
eqeltrd |
|- ( ( ph /\ s = 0 ) -> s e. ran Q ) |
205 |
12 178 180 204
|
fourierdlem12 |
|- ( ( ( ph /\ s = 0 ) /\ i e. ( 0 ..^ M ) ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
206 |
205
|
an32s |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = 0 ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
207 |
206
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ s = 0 ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
208 |
177 207
|
pm2.65da |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
209 |
208
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
210 |
209
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
211 |
|
elioore |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. RR ) |
212 |
211
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
213 |
|
0red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. RR ) |
214 |
|
elioo3g |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. RR* ) /\ ( ( Q ` i ) < s /\ s < ( Q ` ( i + 1 ) ) ) ) ) |
215 |
214
|
biimpi |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. RR* ) /\ ( ( Q ` i ) < s /\ s < ( Q ` ( i + 1 ) ) ) ) ) |
216 |
215
|
simprrd |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
217 |
216
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
218 |
175
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) = 0 ) |
219 |
217 218
|
breqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < 0 ) |
220 |
212 213 219
|
ltnsymd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. 0 < s ) |
221 |
220
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = W ) |
222 |
221
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) = ( ( F ` ( X + s ) ) - W ) ) |
223 |
222
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) = ( ( ( F ` ( X + s ) ) - W ) / s ) ) |
224 |
51
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
225 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
226 |
225
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR* ) |
227 |
166
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
228 |
227 212
|
readdcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
229 |
120
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
230 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
231 |
19 18 230
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
232 |
231 61
|
sstri |
|- ( -u _pi [,] _pi ) C_ CC |
233 |
188 138
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. ( -u _pi [,] _pi ) ) |
234 |
17 233
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( -u _pi [,] _pi ) ) |
235 |
232 234
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
236 |
229 235
|
addcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` i ) ) = ( ( Q ` i ) + X ) ) |
237 |
149
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + X ) = ( ( ( V ` i ) - X ) + X ) ) |
238 |
29
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. CC ) |
239 |
238 229
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( V ` i ) - X ) + X ) = ( V ` i ) ) |
240 |
236 237 239
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
241 |
240
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
242 |
149 147
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
243 |
242
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
244 |
211
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
245 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
246 |
215
|
simprld |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < s ) |
247 |
246
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
248 |
243 244 245 247
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` i ) ) < ( X + s ) ) |
249 |
241 248
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
250 |
249
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
251 |
|
ltaddneg |
|- ( ( s e. RR /\ X e. RR ) -> ( s < 0 <-> ( X + s ) < X ) ) |
252 |
212 227 251
|
syl2anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( s < 0 <-> ( X + s ) < X ) ) |
253 |
219 252
|
mpbid |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < X ) |
254 |
224 226 228 250 253
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) X ) ) |
255 |
|
fvres |
|- ( ( X + s ) e. ( ( V ` i ) (,) X ) -> ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
256 |
255
|
eqcomd |
|- ( ( X + s ) e. ( ( V ` i ) (,) X ) -> ( F ` ( X + s ) ) = ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) ) |
257 |
254 256
|
syl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) = ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) ) |
258 |
257
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - W ) = ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) ) |
259 |
258
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - W ) / s ) = ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) |
260 |
210 223 259
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) |
261 |
176 260
|
mpteq12dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) = ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) ) |
262 |
109 145 261
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) ) |
263 |
262 175
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( ( V ` i ) - X ) (,) 0 ) |-> ( ( ( ( F |` ( ( V ` i ) (,) X ) ) ` ( X + s ) ) - W ) / s ) ) limCC 0 ) ) |
264 |
104 107 263
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
265 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) |
266 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) |
267 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
268 |
3
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> F : RR --> RR ) |
269 |
1
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
270 |
211
|
adantl |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
271 |
269 270
|
readdcld |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
272 |
268 271
|
ffvelrnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. RR ) |
273 |
272
|
recnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
274 |
273
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
275 |
274
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
276 |
5
|
recnd |
|- ( ph -> Y e. CC ) |
277 |
|
limccl |
|- ( ( F |` ( -oo (,) X ) ) limCC X ) C_ CC |
278 |
277 6
|
sselid |
|- ( ph -> W e. CC ) |
279 |
276 278
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. CC ) |
280 |
279
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
281 |
280
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
282 |
275 281
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
283 |
211
|
recnd |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. CC ) |
284 |
283
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. CC ) |
285 |
|
velsn |
|- ( s e. { 0 } <-> s = 0 ) |
286 |
208 285
|
sylnibr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s e. { 0 } ) |
287 |
286
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s e. { 0 } ) |
288 |
284 287
|
eldifd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( CC \ { 0 } ) ) |
289 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |
290 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) |
291 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) |
292 |
278
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> W e. CC ) |
293 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> RR ) |
294 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
295 |
294
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
296 |
51
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
297 |
165
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
298 |
297
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
299 |
271
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
300 |
198
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
301 |
300 160
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
302 |
301
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
303 |
216
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
304 |
244 302 245 303
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
305 |
168
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( X + ( ( V ` ( i + 1 ) ) - X ) ) ) |
306 |
165
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. CC ) |
307 |
229 306
|
pncan3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( ( V ` ( i + 1 ) ) - X ) ) = ( V ` ( i + 1 ) ) ) |
308 |
305 307
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
309 |
308
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
310 |
304 309
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
311 |
296 298 299 249 310
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
312 |
|
ioossre |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR |
313 |
312
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
314 |
244 303
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` ( i + 1 ) ) ) |
315 |
308
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) = ( X + ( Q ` ( i + 1 ) ) ) ) |
316 |
315
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
317 |
10 316
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
318 |
301
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
319 |
293 166 295 289 311 313 314 317 318
|
fourierdlem53 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
320 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
321 |
320
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
322 |
278
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. CC ) |
323 |
290 321 322 318
|
constlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) limCC ( Q ` ( i + 1 ) ) ) ) |
324 |
289 290 291 274 292 319 323
|
sublimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( R - W ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
325 |
324
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( R - W ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
326 |
|
iftrue |
|- ( ( V ` ( i + 1 ) ) < X -> if ( ( V ` ( i + 1 ) ) < X , W , Y ) = W ) |
327 |
326
|
oveq2d |
|- ( ( V ` ( i + 1 ) ) < X -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) = ( R - W ) ) |
328 |
327
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) = ( R - W ) ) |
329 |
211
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
330 |
|
0red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. RR ) |
331 |
301
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
332 |
216
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
333 |
168
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
334 |
165
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( V ` ( i + 1 ) ) e. RR ) |
335 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> X e. RR ) |
336 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( V ` ( i + 1 ) ) < X ) |
337 |
334 335 336
|
ltled |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( V ` ( i + 1 ) ) <_ X ) |
338 |
334 335
|
suble0d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( ( ( V ` ( i + 1 ) ) - X ) <_ 0 <-> ( V ` ( i + 1 ) ) <_ X ) ) |
339 |
337 338
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( ( V ` ( i + 1 ) ) - X ) <_ 0 ) |
340 |
333 339
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( Q ` ( i + 1 ) ) <_ 0 ) |
341 |
340
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) <_ 0 ) |
342 |
329 331 330 332 341
|
ltletrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < 0 ) |
343 |
329 330 342
|
ltnsymd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. 0 < s ) |
344 |
343
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = W ) |
345 |
344
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) = ( ( F ` ( X + s ) ) - W ) ) |
346 |
345
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) ) |
347 |
346
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
348 |
325 328 347
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` ( i + 1 ) ) < X ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
349 |
348
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ ( V ` ( i + 1 ) ) < X ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
350 |
|
simpl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> ph ) |
351 |
|
simpl2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> i e. ( 0 ..^ M ) ) |
352 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) < X ) -> X e. RR ) |
353 |
352
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> X e. RR ) |
354 |
165
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) < X ) -> ( V ` ( i + 1 ) ) e. RR ) |
355 |
354
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> ( V ` ( i + 1 ) ) e. RR ) |
356 |
|
neqne |
|- ( -. ( V ` ( i + 1 ) ) = X -> ( V ` ( i + 1 ) ) =/= X ) |
357 |
356
|
necomd |
|- ( -. ( V ` ( i + 1 ) ) = X -> X =/= ( V ` ( i + 1 ) ) ) |
358 |
357
|
adantr |
|- ( ( -. ( V ` ( i + 1 ) ) = X /\ -. ( V ` ( i + 1 ) ) < X ) -> X =/= ( V ` ( i + 1 ) ) ) |
359 |
358
|
3ad2antl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> X =/= ( V ` ( i + 1 ) ) ) |
360 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> -. ( V ` ( i + 1 ) ) < X ) |
361 |
353 355 359 360
|
lttri5d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> X < ( V ` ( i + 1 ) ) ) |
362 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( 0 < s , Y , W ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( 0 < s , Y , W ) ) |
363 |
274
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
364 |
279
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
365 |
319
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> R e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
366 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) |
367 |
276
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. CC ) |
368 |
366 321 367 318
|
constlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) limCC ( Q ` ( i + 1 ) ) ) ) |
369 |
368
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> Y e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) limCC ( Q ` ( i + 1 ) ) ) ) |
370 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> X e. RR ) |
371 |
165
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
372 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> X < ( V ` ( i + 1 ) ) ) |
373 |
370 371 372
|
ltnsymd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> -. ( V ` ( i + 1 ) ) < X ) |
374 |
373
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> if ( ( V ` ( i + 1 ) ) < X , W , Y ) = Y ) |
375 |
|
0red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. RR ) |
376 |
242
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
377 |
211
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
378 |
192
|
eqcomd |
|- ( ph -> 0 = ( X - X ) ) |
379 |
378
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> 0 = ( X - X ) ) |
380 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( V ` i ) e. RR ) |
381 |
51
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> ( V ` i ) e. RR* ) |
382 |
297
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
383 |
166
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> X e. RR ) |
384 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. X <_ ( V ` i ) ) -> -. X <_ ( V ` i ) ) |
385 |
29
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. X <_ ( V ` i ) ) -> ( V ` i ) e. RR ) |
386 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. X <_ ( V ` i ) ) -> X e. RR ) |
387 |
385 386
|
ltnled |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. X <_ ( V ` i ) ) -> ( ( V ` i ) < X <-> -. X <_ ( V ` i ) ) ) |
388 |
384 387
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. X <_ ( V ` i ) ) -> ( V ` i ) < X ) |
389 |
388
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> ( V ` i ) < X ) |
390 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> X < ( V ` ( i + 1 ) ) ) |
391 |
381 382 383 389 390
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
392 |
2 8 9 4
|
fourierdlem12 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
393 |
392
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ -. X <_ ( V ` i ) ) -> -. X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
394 |
391 393
|
condan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> X <_ ( V ` i ) ) |
395 |
370 380 370 394
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( X - X ) <_ ( ( V ` i ) - X ) ) |
396 |
379 395
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> 0 <_ ( ( V ` i ) - X ) ) |
397 |
149
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) = ( Q ` i ) ) |
398 |
397
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( ( V ` i ) - X ) = ( Q ` i ) ) |
399 |
396 398
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> 0 <_ ( Q ` i ) ) |
400 |
399
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 <_ ( Q ` i ) ) |
401 |
246
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
402 |
375 376 377 400 401
|
lelttrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 < s ) |
403 |
402
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = Y ) |
404 |
403
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( 0 < s , Y , W ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) ) |
405 |
404
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( 0 < s , Y , W ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) limCC ( Q ` ( i + 1 ) ) ) ) |
406 |
369 374 405
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> if ( ( V ` ( i + 1 ) ) < X , W , Y ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( 0 < s , Y , W ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
407 |
289 362 265 363 364 365 406
|
sublimc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ X < ( V ` ( i + 1 ) ) ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
408 |
350 351 361 407
|
syl21anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ -. ( V ` ( i + 1 ) ) < X ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
409 |
349 408
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
410 |
321 266 318
|
idlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) limCC ( Q ` ( i + 1 ) ) ) ) |
411 |
410
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( Q ` ( i + 1 ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) limCC ( Q ` ( i + 1 ) ) ) ) |
412 |
168
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
413 |
306
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( V ` ( i + 1 ) ) e. CC ) |
414 |
229
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> X e. CC ) |
415 |
356
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( V ` ( i + 1 ) ) =/= X ) |
416 |
413 414 415
|
subne0d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( ( V ` ( i + 1 ) ) - X ) =/= 0 ) |
417 |
412 416
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( Q ` ( i + 1 ) ) =/= 0 ) |
418 |
208
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
419 |
418
|
neqned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= 0 ) |
420 |
265 266 267 282 288 409 411 417 419
|
divlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
421 |
|
iffalse |
|- ( -. ( V ` ( i + 1 ) ) = X -> if ( ( V ` ( i + 1 ) ) = X , E , ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) = ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) |
422 |
16 421
|
syl5eq |
|- ( -. ( V ` ( i + 1 ) ) = X -> A = ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) |
423 |
422
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> A = ( ( R - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) |
424 |
|
ioossre |
|- ( -oo (,) X ) C_ RR |
425 |
424
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ RR ) |
426 |
3 425
|
fssresd |
|- ( ph -> ( F |` ( -oo (,) X ) ) : ( -oo (,) X ) --> RR ) |
427 |
424 62
|
sstrid |
|- ( ph -> ( -oo (,) X ) C_ CC ) |
428 |
49
|
a1i |
|- ( ph -> -oo e. RR* ) |
429 |
1
|
mnfltd |
|- ( ph -> -oo < X ) |
430 |
66 428 1 429
|
lptioo2cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( -oo (,) X ) ) ) |
431 |
426 427 430 6
|
limcrecl |
|- ( ph -> W e. RR ) |
432 |
3 1 5 431 7
|
fourierdlem9 |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |
433 |
432
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> H : ( -u _pi [,] _pi ) --> RR ) |
434 |
433 143
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) ) |
435 |
143
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( -u _pi [,] _pi ) ) |
436 |
|
0cnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. CC ) |
437 |
279
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
438 |
274 437
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
439 |
283
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. CC ) |
440 |
208
|
neqned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= 0 ) |
441 |
438 439 440
|
divcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) e. CC ) |
442 |
436 441
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. CC ) |
443 |
7
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. CC ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
444 |
435 442 443
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
445 |
208
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
446 |
444 445
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
447 |
446
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
448 |
434 447
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
449 |
448
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
450 |
449
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
451 |
420 423 450
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` ( i + 1 ) ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
452 |
451
|
3expa |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
453 |
264 452
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |