Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem75.xre |
|- ( ph -> X e. RR ) |
2 |
|
fourierdlem75.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
3 |
|
fourierdlem75.f |
|- ( ph -> F : RR --> RR ) |
4 |
|
fourierdlem75.x |
|- ( ph -> X e. ran V ) |
5 |
|
fourierdlem75.y |
|- ( ph -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
6 |
|
fourierdlem75.w |
|- ( ph -> W e. RR ) |
7 |
|
fourierdlem75.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
8 |
|
fourierdlem75.m |
|- ( ph -> M e. NN ) |
9 |
|
fourierdlem75.v |
|- ( ph -> V e. ( P ` M ) ) |
10 |
|
fourierdlem75.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
11 |
|
fourierdlem75.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
12 |
|
fourierdlem75.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
13 |
|
fourierdlem75.g |
|- G = ( RR _D F ) |
14 |
|
fourierdlem75.gcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) |
15 |
|
fourierdlem75.e |
|- ( ph -> E e. ( ( G |` ( X (,) +oo ) ) limCC X ) ) |
16 |
|
fourierdlem75.a |
|- A = if ( ( V ` i ) = X , E , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) |
17 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> X e. RR ) |
18 |
2
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
19 |
8 18
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
20 |
9 19
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
21 |
20
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
22 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
23 |
21 22
|
syl |
|- ( ph -> V : ( 0 ... M ) --> RR ) |
24 |
23
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> RR ) |
25 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
26 |
25
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
27 |
24 26
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
28 |
27
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( V ` ( i + 1 ) ) e. RR ) |
29 |
|
eqcom |
|- ( ( V ` i ) = X <-> X = ( V ` i ) ) |
30 |
29
|
biimpi |
|- ( ( V ` i ) = X -> X = ( V ` i ) ) |
31 |
30
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> X = ( V ` i ) ) |
32 |
20
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) |
33 |
32
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
34 |
33
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
35 |
31 34
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> X < ( V ` ( i + 1 ) ) ) |
36 |
3
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> RR ) |
37 |
|
ioossre |
|- ( X (,) ( V ` ( i + 1 ) ) ) C_ RR |
38 |
37
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
39 |
36 38
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( X (,) ( V ` ( i + 1 ) ) ) --> RR ) |
40 |
39
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( X (,) ( V ` ( i + 1 ) ) ) --> RR ) |
41 |
|
limcresi |
|- ( ( F |` ( X (,) +oo ) ) limCC X ) C_ ( ( ( F |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) |
42 |
41 5
|
sselid |
|- ( ph -> Y e. ( ( ( F |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
43 |
42
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. ( ( ( F |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
44 |
|
pnfxr |
|- +oo e. RR* |
45 |
44
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> +oo e. RR* ) |
46 |
27
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
47 |
27
|
ltpnfd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) < +oo ) |
48 |
46 45 47
|
xrltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) <_ +oo ) |
49 |
|
iooss2 |
|- ( ( +oo e. RR* /\ ( V ` ( i + 1 ) ) <_ +oo ) -> ( X (,) ( V ` ( i + 1 ) ) ) C_ ( X (,) +oo ) ) |
50 |
45 48 49
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X (,) ( V ` ( i + 1 ) ) ) C_ ( X (,) +oo ) ) |
51 |
50
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
52 |
51
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( F |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) = ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
53 |
43 52
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
54 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> Y e. ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
55 |
|
eqid |
|- ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
56 |
|
ax-resscn |
|- RR C_ CC |
57 |
56
|
a1i |
|- ( ph -> RR C_ CC ) |
58 |
3 57
|
fssd |
|- ( ph -> F : RR --> CC ) |
59 |
|
ssid |
|- RR C_ RR |
60 |
59
|
a1i |
|- ( ph -> RR C_ RR ) |
61 |
37
|
a1i |
|- ( ph -> ( X (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
62 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
63 |
62
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
64 |
62 63
|
dvres |
|- ( ( ( RR C_ CC /\ F : RR --> CC ) /\ ( RR C_ RR /\ ( X (,) ( V ` ( i + 1 ) ) ) C_ RR ) ) -> ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X (,) ( V ` ( i + 1 ) ) ) ) ) ) |
65 |
57 58 60 61 64
|
syl22anc |
|- ( ph -> ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X (,) ( V ` ( i + 1 ) ) ) ) ) ) |
66 |
13
|
eqcomi |
|- ( RR _D F ) = G |
67 |
|
ioontr |
|- ( ( int ` ( topGen ` ran (,) ) ) ` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) |
68 |
66 67
|
reseq12i |
|- ( ( RR _D F ) |` ( ( int ` ( topGen ` ran (,) ) ) ` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) |
69 |
65 68
|
eqtrdi |
|- ( ph -> ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
70 |
69
|
adantr |
|- ( ( ph /\ ( V ` i ) = X ) -> ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
71 |
70
|
dmeqd |
|- ( ( ph /\ ( V ` i ) = X ) -> dom ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = dom ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
72 |
71
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> dom ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = dom ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
73 |
14
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) |
74 |
|
oveq1 |
|- ( ( V ` i ) = X -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) ) |
75 |
74
|
reseq2d |
|- ( ( V ` i ) = X -> ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
76 |
75
|
feq1d |
|- ( ( V ` i ) = X -> ( ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC <-> ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) ) |
77 |
76
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( G |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC <-> ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) ) |
78 |
73 77
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) |
79 |
74
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) ) |
80 |
79
|
feq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC <-> ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( X (,) ( V ` ( i + 1 ) ) ) --> CC ) ) |
81 |
78 80
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( X (,) ( V ` ( i + 1 ) ) ) --> CC ) |
82 |
|
fdm |
|- ( ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) : ( X (,) ( V ` ( i + 1 ) ) ) --> CC -> dom ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) ) |
83 |
81 82
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> dom ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) ) |
84 |
72 83
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> dom ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( X (,) ( V ` ( i + 1 ) ) ) ) |
85 |
|
limcresi |
|- ( ( G |` ( X (,) +oo ) ) limCC X ) C_ ( ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) |
86 |
85 15
|
sselid |
|- ( ph -> E e. ( ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
87 |
86
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E e. ( ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) ) |
88 |
50
|
resabs1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
89 |
69
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) = ( G |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) |
90 |
88 89
|
eqtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) = ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) ) |
91 |
90
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( G |` ( X (,) +oo ) ) |` ( X (,) ( V ` ( i + 1 ) ) ) ) limCC X ) = ( ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) limCC X ) ) |
92 |
87 91
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> E e. ( ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) limCC X ) ) |
93 |
92
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> E e. ( ( RR _D ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ) limCC X ) ) |
94 |
|
eqid |
|- ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) = ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) |
95 |
|
oveq2 |
|- ( x = s -> ( X + x ) = ( X + s ) ) |
96 |
95
|
fveq2d |
|- ( x = s -> ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + x ) ) = ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) |
97 |
96
|
oveq1d |
|- ( x = s -> ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + x ) ) - Y ) = ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) ) |
98 |
97
|
cbvmptv |
|- ( x e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + x ) ) - Y ) ) = ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) ) |
99 |
|
id |
|- ( x = s -> x = s ) |
100 |
99
|
cbvmptv |
|- ( x e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> x ) = ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> s ) |
101 |
17 28 35 40 54 55 84 93 94 98 100
|
fourierdlem61 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> E e. ( ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) limCC 0 ) ) |
102 |
|
iftrue |
|- ( ( V ` i ) = X -> if ( ( V ` i ) = X , E , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) = E ) |
103 |
16 102
|
syl5eq |
|- ( ( V ` i ) = X -> A = E ) |
104 |
103
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> A = E ) |
105 |
7
|
reseq1i |
|- ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
106 |
105
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
107 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
108 |
|
pire |
|- _pi e. RR |
109 |
108
|
renegcli |
|- -u _pi e. RR |
110 |
109
|
rexri |
|- -u _pi e. RR* |
111 |
110
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
112 |
108
|
rexri |
|- _pi e. RR* |
113 |
112
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
114 |
109
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi e. RR ) |
115 |
108
|
a1i |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> _pi e. RR ) |
116 |
109
|
a1i |
|- ( ph -> -u _pi e. RR ) |
117 |
116 1
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
118 |
108
|
a1i |
|- ( ph -> _pi e. RR ) |
119 |
118 1
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
120 |
117 119
|
iccssred |
|- ( ph -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
121 |
120
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
122 |
2 8 9
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
123 |
122
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
124 |
121 123
|
sseldd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) e. RR ) |
125 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. RR ) |
126 |
124 125
|
resubcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. RR ) |
127 |
116
|
recnd |
|- ( ph -> -u _pi e. CC ) |
128 |
1
|
recnd |
|- ( ph -> X e. CC ) |
129 |
127 128
|
pncand |
|- ( ph -> ( ( -u _pi + X ) - X ) = -u _pi ) |
130 |
129
|
eqcomd |
|- ( ph -> -u _pi = ( ( -u _pi + X ) - X ) ) |
131 |
130
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi = ( ( -u _pi + X ) - X ) ) |
132 |
117
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( -u _pi + X ) e. RR ) |
133 |
119
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( _pi + X ) e. RR ) |
134 |
|
elicc2 |
|- ( ( ( -u _pi + X ) e. RR /\ ( _pi + X ) e. RR ) -> ( ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) <-> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) ) |
135 |
132 133 134
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) <-> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) ) |
136 |
123 135
|
mpbid |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) e. RR /\ ( -u _pi + X ) <_ ( V ` i ) /\ ( V ` i ) <_ ( _pi + X ) ) ) |
137 |
136
|
simp2d |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( -u _pi + X ) <_ ( V ` i ) ) |
138 |
132 124 125 137
|
lesub1dd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( -u _pi + X ) - X ) <_ ( ( V ` i ) - X ) ) |
139 |
131 138
|
eqbrtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> -u _pi <_ ( ( V ` i ) - X ) ) |
140 |
136
|
simp3d |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( V ` i ) <_ ( _pi + X ) ) |
141 |
124 133 125 140
|
lesub1dd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) <_ ( ( _pi + X ) - X ) ) |
142 |
115
|
recnd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> _pi e. CC ) |
143 |
128
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> X e. CC ) |
144 |
142 143
|
pncand |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( _pi + X ) - X ) = _pi ) |
145 |
141 144
|
breqtrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) <_ _pi ) |
146 |
114 115 126 139 145
|
eliccd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) - X ) e. ( -u _pi [,] _pi ) ) |
147 |
146 11
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
148 |
147
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
149 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
150 |
111 113 148 149
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
151 |
107 150
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
152 |
151
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) ) |
153 |
152
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) ) |
154 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
155 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> i e. ( 0 ... M ) ) |
156 |
11
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. ( -u _pi [,] _pi ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
157 |
155 146 156
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
158 |
157
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
159 |
|
oveq1 |
|- ( ( V ` i ) = X -> ( ( V ` i ) - X ) = ( X - X ) ) |
160 |
159
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( ( V ` i ) - X ) = ( X - X ) ) |
161 |
128
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> X e. CC ) |
162 |
161
|
subidd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( X - X ) = 0 ) |
163 |
158 160 162
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ... M ) ) /\ ( V ` i ) = X ) -> ( Q ` i ) = 0 ) |
164 |
154 163
|
sylanl2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( Q ` i ) = 0 ) |
165 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
166 |
165
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
167 |
166
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
168 |
11 167
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
169 |
168
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
170 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
171 |
170
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
172 |
171
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
173 |
1
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
174 |
27 173
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
175 |
169 172 26 174
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
176 |
175
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
177 |
164 176
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) = ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) ) |
178 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ s = 0 ) -> s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
179 |
8
|
adantr |
|- ( ( ph /\ s = 0 ) -> M e. NN ) |
180 |
116 118 1 2 12 8 9 11
|
fourierdlem14 |
|- ( ph -> Q e. ( O ` M ) ) |
181 |
180
|
adantr |
|- ( ( ph /\ s = 0 ) -> Q e. ( O ` M ) ) |
182 |
|
simpr |
|- ( ( ph /\ s = 0 ) -> s = 0 ) |
183 |
|
ffn |
|- ( V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) -> V Fn ( 0 ... M ) ) |
184 |
|
fvelrnb |
|- ( V Fn ( 0 ... M ) -> ( X e. ran V <-> E. i e. ( 0 ... M ) ( V ` i ) = X ) ) |
185 |
122 183 184
|
3syl |
|- ( ph -> ( X e. ran V <-> E. i e. ( 0 ... M ) ( V ` i ) = X ) ) |
186 |
4 185
|
mpbid |
|- ( ph -> E. i e. ( 0 ... M ) ( V ` i ) = X ) |
187 |
163
|
ex |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( V ` i ) = X -> ( Q ` i ) = 0 ) ) |
188 |
187
|
reximdva |
|- ( ph -> ( E. i e. ( 0 ... M ) ( V ` i ) = X -> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
189 |
186 188
|
mpd |
|- ( ph -> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) |
190 |
126 11
|
fmptd |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
191 |
|
ffn |
|- ( Q : ( 0 ... M ) --> RR -> Q Fn ( 0 ... M ) ) |
192 |
|
fvelrnb |
|- ( Q Fn ( 0 ... M ) -> ( 0 e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
193 |
190 191 192
|
3syl |
|- ( ph -> ( 0 e. ran Q <-> E. i e. ( 0 ... M ) ( Q ` i ) = 0 ) ) |
194 |
189 193
|
mpbird |
|- ( ph -> 0 e. ran Q ) |
195 |
194
|
adantr |
|- ( ( ph /\ s = 0 ) -> 0 e. ran Q ) |
196 |
182 195
|
eqeltrd |
|- ( ( ph /\ s = 0 ) -> s e. ran Q ) |
197 |
12 179 181 196
|
fourierdlem12 |
|- ( ( ( ph /\ s = 0 ) /\ i e. ( 0 ..^ M ) ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
198 |
197
|
an32s |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s = 0 ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
199 |
198
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) /\ s = 0 ) -> -. s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
200 |
178 199
|
pm2.65da |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
201 |
200
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
202 |
201
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
203 |
164
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> 0 = ( Q ` i ) ) |
204 |
203
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 = ( Q ` i ) ) |
205 |
|
elioo3g |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. RR* ) /\ ( ( Q ` i ) < s /\ s < ( Q ` ( i + 1 ) ) ) ) ) |
206 |
205
|
biimpi |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. RR* ) /\ ( ( Q ` i ) < s /\ s < ( Q ` ( i + 1 ) ) ) ) ) |
207 |
206
|
simprld |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < s ) |
208 |
207
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
209 |
204 208
|
eqbrtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 < s ) |
210 |
209
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = Y ) |
211 |
210
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) = ( ( F ` ( X + s ) ) - Y ) ) |
212 |
211
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) = ( ( ( F ` ( X + s ) ) - Y ) / s ) ) |
213 |
1
|
rexrd |
|- ( ph -> X e. RR* ) |
214 |
213
|
ad3antrrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR* ) |
215 |
46
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
216 |
173
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
217 |
|
elioore |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. RR ) |
218 |
217
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
219 |
216 218
|
readdcld |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
220 |
218 209
|
elrpd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR+ ) |
221 |
216 220
|
ltaddrpd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X < ( X + s ) ) |
222 |
217
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
223 |
190
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
224 |
223 26
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
225 |
224
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
226 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
227 |
206
|
simprrd |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
228 |
227
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
229 |
222 225 226 228
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
230 |
175
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( X + ( ( V ` ( i + 1 ) ) - X ) ) ) |
231 |
128
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
232 |
27
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. CC ) |
233 |
231 232
|
pncan3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( ( V ` ( i + 1 ) ) - X ) ) = ( V ` ( i + 1 ) ) ) |
234 |
230 233
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
235 |
234
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
236 |
229 235
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
237 |
236
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
238 |
214 215 219 221 237
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( X (,) ( V ` ( i + 1 ) ) ) ) |
239 |
|
fvres |
|- ( ( X + s ) e. ( X (,) ( V ` ( i + 1 ) ) ) -> ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
240 |
238 239
|
syl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
241 |
240
|
eqcomd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) = ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) |
242 |
241
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - Y ) = ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) ) |
243 |
242
|
oveq1d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - Y ) / s ) = ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) |
244 |
202 212 243
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) |
245 |
177 244
|
mpteq12dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) = ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) ) |
246 |
106 153 245
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) ) |
247 |
246 164
|
oveq12d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( 0 (,) ( ( V ` ( i + 1 ) ) - X ) ) |-> ( ( ( ( F |` ( X (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) - Y ) / s ) ) limCC 0 ) ) |
248 |
101 104 247
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
249 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) |
250 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) |
251 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
252 |
3
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> F : RR --> RR ) |
253 |
1
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
254 |
217
|
adantl |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
255 |
253 254
|
readdcld |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
256 |
252 255
|
ffvelrnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. RR ) |
257 |
256
|
recnd |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
258 |
257
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
259 |
258
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
260 |
|
limccl |
|- ( ( F |` ( X (,) +oo ) ) limCC X ) C_ CC |
261 |
260 5
|
sselid |
|- ( ph -> Y e. CC ) |
262 |
6
|
recnd |
|- ( ph -> W e. CC ) |
263 |
261 262
|
ifcld |
|- ( ph -> if ( 0 < s , Y , W ) e. CC ) |
264 |
263
|
adantr |
|- ( ( ph /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
265 |
264
|
3ad2antl1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
266 |
259 265
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
267 |
217
|
recnd |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. CC ) |
268 |
267
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. CC ) |
269 |
|
velsn |
|- ( s e. { 0 } <-> s = 0 ) |
270 |
200 269
|
sylnibr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s e. { 0 } ) |
271 |
270
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s e. { 0 } ) |
272 |
268 271
|
eldifd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( CC \ { 0 } ) ) |
273 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |
274 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) |
275 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) |
276 |
262
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> W e. CC ) |
277 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
278 |
277
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
279 |
154 124
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
280 |
279
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR* ) |
281 |
280
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
282 |
46
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
283 |
255
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
284 |
|
iccssre |
|- ( ( -u _pi e. RR /\ _pi e. RR ) -> ( -u _pi [,] _pi ) C_ RR ) |
285 |
109 108 284
|
mp2an |
|- ( -u _pi [,] _pi ) C_ RR |
286 |
285 56
|
sstri |
|- ( -u _pi [,] _pi ) C_ CC |
287 |
157 146
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. ( -u _pi [,] _pi ) ) |
288 |
154 287
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( -u _pi [,] _pi ) ) |
289 |
286 288
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
290 |
231 289
|
addcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( X + ( Q ` i ) ) = ( ( Q ` i ) + X ) ) |
291 |
154
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
292 |
154 126
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
293 |
11
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
294 |
291 292 293
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
295 |
294
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + X ) = ( ( ( V ` i ) - X ) + X ) ) |
296 |
279
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. CC ) |
297 |
296 231
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( V ` i ) - X ) + X ) = ( V ` i ) ) |
298 |
290 295 297
|
3eqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
299 |
298
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
300 |
294 292
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
301 |
300
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
302 |
207
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
303 |
301 222 226 302
|
ltadd2dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` i ) ) < ( X + s ) ) |
304 |
299 303
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
305 |
281 282 283 304 236
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
306 |
|
ioossre |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR |
307 |
306
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
308 |
301 302
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` i ) ) |
309 |
298
|
oveq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
310 |
10 309
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
311 |
36 173 278 273 305 307 308 310 289
|
fourierdlem53 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` i ) ) ) |
312 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
313 |
312
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
314 |
262
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. CC ) |
315 |
274 313 314 289
|
constlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> W ) limCC ( Q ` i ) ) ) |
316 |
273 274 275 258 276 311 315
|
sublimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( R - W ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` i ) ) ) |
317 |
316
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( R - W ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` i ) ) ) |
318 |
|
iftrue |
|- ( ( V ` i ) < X -> if ( ( V ` i ) < X , W , Y ) = W ) |
319 |
318
|
oveq2d |
|- ( ( V ` i ) < X -> ( R - if ( ( V ` i ) < X , W , Y ) ) = ( R - W ) ) |
320 |
319
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) = ( R - W ) ) |
321 |
217
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
322 |
|
0red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. RR ) |
323 |
224
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
324 |
227
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
325 |
175
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
326 |
280
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> ( V ` i ) e. RR* ) |
327 |
46
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> ( V ` ( i + 1 ) ) e. RR* ) |
328 |
173
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> X e. RR ) |
329 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> ( V ` i ) < X ) |
330 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> -. ( V ` ( i + 1 ) ) <_ X ) |
331 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> X e. RR ) |
332 |
27
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> ( V ` ( i + 1 ) ) e. RR ) |
333 |
331 332
|
ltnled |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> ( X < ( V ` ( i + 1 ) ) <-> -. ( V ` ( i + 1 ) ) <_ X ) ) |
334 |
330 333
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> X < ( V ` ( i + 1 ) ) ) |
335 |
334
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> X < ( V ` ( i + 1 ) ) ) |
336 |
326 327 328 329 335
|
eliood |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
337 |
2 8 9 4
|
fourierdlem12 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
338 |
337
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ -. ( V ` ( i + 1 ) ) <_ X ) -> -. X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
339 |
336 338
|
condan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( V ` ( i + 1 ) ) <_ X ) |
340 |
27
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( V ` ( i + 1 ) ) e. RR ) |
341 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> X e. RR ) |
342 |
340 341
|
suble0d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( ( ( V ` ( i + 1 ) ) - X ) <_ 0 <-> ( V ` ( i + 1 ) ) <_ X ) ) |
343 |
339 342
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( ( V ` ( i + 1 ) ) - X ) <_ 0 ) |
344 |
325 343
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( Q ` ( i + 1 ) ) <_ 0 ) |
345 |
344
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) <_ 0 ) |
346 |
321 323 322 324 345
|
ltletrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < 0 ) |
347 |
321 322 346
|
ltnsymd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. 0 < s ) |
348 |
347
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = W ) |
349 |
348
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) = ( ( F ` ( X + s ) ) - W ) ) |
350 |
349
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) ) |
351 |
350
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - W ) ) limCC ( Q ` i ) ) ) |
352 |
317 320 351
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) ) |
353 |
352
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) ) |
354 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) |
355 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) |
356 |
261
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Y e. CC ) |
357 |
261
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. CC ) |
358 |
354 313 357 289
|
constlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> Y ) limCC ( Q ` i ) ) ) |
359 |
273 354 355 258 356 311 358
|
sublimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( R - Y ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) limCC ( Q ` i ) ) ) |
360 |
359
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( R - Y ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) limCC ( Q ` i ) ) ) |
361 |
|
iffalse |
|- ( -. ( V ` i ) < X -> if ( ( V ` i ) < X , W , Y ) = Y ) |
362 |
361
|
oveq2d |
|- ( -. ( V ` i ) < X -> ( R - if ( ( V ` i ) < X , W , Y ) ) = ( R - Y ) ) |
363 |
362
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) = ( R - Y ) ) |
364 |
|
0red |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. RR ) |
365 |
300
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
366 |
217
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
367 |
1
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> X e. RR ) |
368 |
279
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( V ` i ) e. RR ) |
369 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> -. ( V ` i ) < X ) |
370 |
367 368 369
|
nltled |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> X <_ ( V ` i ) ) |
371 |
368 367
|
subge0d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( 0 <_ ( ( V ` i ) - X ) <-> X <_ ( V ` i ) ) ) |
372 |
370 371
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> 0 <_ ( ( V ` i ) - X ) ) |
373 |
294
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) = ( Q ` i ) ) |
374 |
373
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( ( V ` i ) - X ) = ( Q ` i ) ) |
375 |
372 374
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> 0 <_ ( Q ` i ) ) |
376 |
375
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 <_ ( Q ` i ) ) |
377 |
207
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
378 |
364 365 366 376 377
|
lelttrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 < s ) |
379 |
378
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) = Y ) |
380 |
379
|
oveq2d |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) = ( ( F ` ( X + s ) ) - Y ) ) |
381 |
380
|
mpteq2dva |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) ) |
382 |
381
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - Y ) ) limCC ( Q ` i ) ) ) |
383 |
360 363 382
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) ) |
384 |
383
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ -. ( V ` i ) < X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) ) |
385 |
353 384
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( R - if ( ( V ` i ) < X , W , Y ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) ) limCC ( Q ` i ) ) ) |
386 |
313 250 289
|
idlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) limCC ( Q ` i ) ) ) |
387 |
386
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( Q ` i ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> s ) limCC ( Q ` i ) ) ) |
388 |
294
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
389 |
296
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( V ` i ) e. CC ) |
390 |
231
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> X e. CC ) |
391 |
|
neqne |
|- ( -. ( V ` i ) = X -> ( V ` i ) =/= X ) |
392 |
391
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( V ` i ) =/= X ) |
393 |
389 390 392
|
subne0d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( ( V ` i ) - X ) =/= 0 ) |
394 |
388 393
|
eqnetrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( Q ` i ) =/= 0 ) |
395 |
200
|
3adantl3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -. s = 0 ) |
396 |
395
|
neqned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= 0 ) |
397 |
249 250 251 266 272 385 387 394 396
|
divlimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) limCC ( Q ` i ) ) ) |
398 |
|
iffalse |
|- ( -. ( V ` i ) = X -> if ( ( V ` i ) = X , E , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) = ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) |
399 |
16 398
|
syl5eq |
|- ( -. ( V ` i ) = X -> A = ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) |
400 |
399
|
3ad2ant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> A = ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) |
401 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
402 |
401
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ RR ) |
403 |
3 402
|
fssresd |
|- ( ph -> ( F |` ( X (,) +oo ) ) : ( X (,) +oo ) --> RR ) |
404 |
401 57
|
sstrid |
|- ( ph -> ( X (,) +oo ) C_ CC ) |
405 |
44
|
a1i |
|- ( ph -> +oo e. RR* ) |
406 |
1
|
ltpnfd |
|- ( ph -> X < +oo ) |
407 |
62 405 1 406
|
lptioo1cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) +oo ) ) ) |
408 |
403 404 407 5
|
limcrecl |
|- ( ph -> Y e. RR ) |
409 |
3 1 408 6 7
|
fourierdlem9 |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |
410 |
409
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> H : ( -u _pi [,] _pi ) --> RR ) |
411 |
410 151
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) ) |
412 |
151
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( -u _pi [,] _pi ) ) |
413 |
|
0cnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> 0 e. CC ) |
414 |
263
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( 0 < s , Y , W ) e. CC ) |
415 |
258 414
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) e. CC ) |
416 |
267
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. CC ) |
417 |
200
|
neqned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= 0 ) |
418 |
415 416 417
|
divcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) e. CC ) |
419 |
413 418
|
ifcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. CC ) |
420 |
7
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) e. CC ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
421 |
412 419 420
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) = if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
422 |
200
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
423 |
421 422
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) = ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) |
424 |
423
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
425 |
411 424
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
426 |
425
|
3adant3 |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
427 |
426
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) limCC ( Q ` i ) ) ) |
428 |
397 400 427
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) /\ -. ( V ` i ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
429 |
428
|
3expa |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ -. ( V ` i ) = X ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
430 |
248 429
|
pm2.61dan |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |