Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem76.f |
|- ( ph -> F : RR --> RR ) |
2 |
|
fourierdlem76.xre |
|- ( ph -> X e. RR ) |
3 |
|
fourierdlem76.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem76.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem76.v |
|- ( ph -> V e. ( P ` M ) ) |
6 |
|
fourierdlem76.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
7 |
|
fourierdlem76.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
8 |
|
fourierdlem76.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
9 |
|
fourierdlem76.a |
|- ( ph -> A e. RR ) |
10 |
|
fourierdlem76.b |
|- ( ph -> B e. RR ) |
11 |
|
fourierdlem76.altb |
|- ( ph -> A < B ) |
12 |
|
fourierdlem76.ab |
|- ( ph -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
13 |
|
fourierdlem76.n0 |
|- ( ph -> -. 0 e. ( A [,] B ) ) |
14 |
|
fourierdlem76.c |
|- ( ph -> C e. RR ) |
15 |
|
fourierdlem76.o |
|- O = ( s e. ( A [,] B ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
16 |
|
fourierdlem76.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
17 |
|
fourierdlem76.t |
|- T = ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) |
18 |
|
fourierdlem76.n |
|- N = ( ( # ` T ) - 1 ) |
19 |
|
fourierdlem76.s |
|- S = ( iota f f Isom < , < ( ( 0 ... N ) , T ) ) |
20 |
|
fourierdlem76.d |
|- D = ( ( ( if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) - C ) / ( S ` ( j + 1 ) ) ) x. ( ( S ` ( j + 1 ) ) / ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) ) ) |
21 |
|
fourierdlem76.e |
|- E = ( ( ( if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) - C ) / ( S ` j ) ) x. ( ( S ` j ) / ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) ) ) |
22 |
|
fourierdlem76.ch |
|- ( ch <-> ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
23 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) |
24 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) |
25 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
26 |
|
simplll |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
27 |
22 26
|
sylbi |
|- ( ch -> ph ) |
28 |
27
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ph ) |
29 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
30 |
9
|
rexrd |
|- ( ph -> A e. RR* ) |
31 |
27 30
|
syl |
|- ( ch -> A e. RR* ) |
32 |
31
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> A e. RR* ) |
33 |
10
|
rexrd |
|- ( ph -> B e. RR* ) |
34 |
27 33
|
syl |
|- ( ch -> B e. RR* ) |
35 |
34
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> B e. RR* ) |
36 |
|
elioore |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> s e. RR ) |
37 |
36
|
adantl |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. RR ) |
38 |
27 9
|
syl |
|- ( ch -> A e. RR ) |
39 |
38
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> A e. RR ) |
40 |
|
prfi |
|- { A , B } e. Fin |
41 |
40
|
a1i |
|- ( ph -> { A , B } e. Fin ) |
42 |
|
fzfid |
|- ( ph -> ( 0 ... M ) e. Fin ) |
43 |
16
|
rnmptfi |
|- ( ( 0 ... M ) e. Fin -> ran Q e. Fin ) |
44 |
|
infi |
|- ( ran Q e. Fin -> ( ran Q i^i ( A (,) B ) ) e. Fin ) |
45 |
42 43 44
|
3syl |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) e. Fin ) |
46 |
|
unfi |
|- ( ( { A , B } e. Fin /\ ( ran Q i^i ( A (,) B ) ) e. Fin ) -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) e. Fin ) |
47 |
41 45 46
|
syl2anc |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) e. Fin ) |
48 |
17 47
|
eqeltrid |
|- ( ph -> T e. Fin ) |
49 |
|
prssg |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) ) |
50 |
9 10 49
|
syl2anc |
|- ( ph -> ( ( A e. RR /\ B e. RR ) <-> { A , B } C_ RR ) ) |
51 |
9 10 50
|
mpbi2and |
|- ( ph -> { A , B } C_ RR ) |
52 |
|
inss2 |
|- ( ran Q i^i ( A (,) B ) ) C_ ( A (,) B ) |
53 |
|
ioossre |
|- ( A (,) B ) C_ RR |
54 |
52 53
|
sstri |
|- ( ran Q i^i ( A (,) B ) ) C_ RR |
55 |
54
|
a1i |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) C_ RR ) |
56 |
51 55
|
unssd |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) C_ RR ) |
57 |
17 56
|
eqsstrid |
|- ( ph -> T C_ RR ) |
58 |
48 57 19 18
|
fourierdlem36 |
|- ( ph -> S Isom < , < ( ( 0 ... N ) , T ) ) |
59 |
27 58
|
syl |
|- ( ch -> S Isom < , < ( ( 0 ... N ) , T ) ) |
60 |
|
isof1o |
|- ( S Isom < , < ( ( 0 ... N ) , T ) -> S : ( 0 ... N ) -1-1-onto-> T ) |
61 |
|
f1of |
|- ( S : ( 0 ... N ) -1-1-onto-> T -> S : ( 0 ... N ) --> T ) |
62 |
59 60 61
|
3syl |
|- ( ch -> S : ( 0 ... N ) --> T ) |
63 |
27 57
|
syl |
|- ( ch -> T C_ RR ) |
64 |
62 63
|
fssd |
|- ( ch -> S : ( 0 ... N ) --> RR ) |
65 |
64
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> S : ( 0 ... N ) --> RR ) |
66 |
|
simpllr |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> j e. ( 0 ..^ N ) ) |
67 |
22 66
|
sylbi |
|- ( ch -> j e. ( 0 ..^ N ) ) |
68 |
|
elfzofz |
|- ( j e. ( 0 ..^ N ) -> j e. ( 0 ... N ) ) |
69 |
67 68
|
syl |
|- ( ch -> j e. ( 0 ... N ) ) |
70 |
69
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> j e. ( 0 ... N ) ) |
71 |
65 70
|
ffvelrnd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` j ) e. RR ) |
72 |
58 60 61
|
3syl |
|- ( ph -> S : ( 0 ... N ) --> T ) |
73 |
|
frn |
|- ( S : ( 0 ... N ) --> T -> ran S C_ T ) |
74 |
72 73
|
syl |
|- ( ph -> ran S C_ T ) |
75 |
9
|
leidd |
|- ( ph -> A <_ A ) |
76 |
9 10 11
|
ltled |
|- ( ph -> A <_ B ) |
77 |
9 10 9 75 76
|
eliccd |
|- ( ph -> A e. ( A [,] B ) ) |
78 |
10
|
leidd |
|- ( ph -> B <_ B ) |
79 |
9 10 10 76 78
|
eliccd |
|- ( ph -> B e. ( A [,] B ) ) |
80 |
|
prssg |
|- ( ( A e. RR /\ B e. RR ) -> ( ( A e. ( A [,] B ) /\ B e. ( A [,] B ) ) <-> { A , B } C_ ( A [,] B ) ) ) |
81 |
9 10 80
|
syl2anc |
|- ( ph -> ( ( A e. ( A [,] B ) /\ B e. ( A [,] B ) ) <-> { A , B } C_ ( A [,] B ) ) ) |
82 |
77 79 81
|
mpbi2and |
|- ( ph -> { A , B } C_ ( A [,] B ) ) |
83 |
52 29
|
sstri |
|- ( ran Q i^i ( A (,) B ) ) C_ ( A [,] B ) |
84 |
83
|
a1i |
|- ( ph -> ( ran Q i^i ( A (,) B ) ) C_ ( A [,] B ) ) |
85 |
82 84
|
unssd |
|- ( ph -> ( { A , B } u. ( ran Q i^i ( A (,) B ) ) ) C_ ( A [,] B ) ) |
86 |
17 85
|
eqsstrid |
|- ( ph -> T C_ ( A [,] B ) ) |
87 |
74 86
|
sstrd |
|- ( ph -> ran S C_ ( A [,] B ) ) |
88 |
27 87
|
syl |
|- ( ch -> ran S C_ ( A [,] B ) ) |
89 |
|
ffun |
|- ( S : ( 0 ... N ) --> RR -> Fun S ) |
90 |
64 89
|
syl |
|- ( ch -> Fun S ) |
91 |
|
fdm |
|- ( S : ( 0 ... N ) --> RR -> dom S = ( 0 ... N ) ) |
92 |
64 91
|
syl |
|- ( ch -> dom S = ( 0 ... N ) ) |
93 |
92
|
eqcomd |
|- ( ch -> ( 0 ... N ) = dom S ) |
94 |
69 93
|
eleqtrd |
|- ( ch -> j e. dom S ) |
95 |
|
fvelrn |
|- ( ( Fun S /\ j e. dom S ) -> ( S ` j ) e. ran S ) |
96 |
90 94 95
|
syl2anc |
|- ( ch -> ( S ` j ) e. ran S ) |
97 |
88 96
|
sseldd |
|- ( ch -> ( S ` j ) e. ( A [,] B ) ) |
98 |
|
iccgelb |
|- ( ( A e. RR* /\ B e. RR* /\ ( S ` j ) e. ( A [,] B ) ) -> A <_ ( S ` j ) ) |
99 |
31 34 97 98
|
syl3anc |
|- ( ch -> A <_ ( S ` j ) ) |
100 |
99
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> A <_ ( S ` j ) ) |
101 |
71
|
rexrd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` j ) e. RR* ) |
102 |
|
fzofzp1 |
|- ( j e. ( 0 ..^ N ) -> ( j + 1 ) e. ( 0 ... N ) ) |
103 |
67 102
|
syl |
|- ( ch -> ( j + 1 ) e. ( 0 ... N ) ) |
104 |
64 103
|
ffvelrnd |
|- ( ch -> ( S ` ( j + 1 ) ) e. RR ) |
105 |
104
|
rexrd |
|- ( ch -> ( S ` ( j + 1 ) ) e. RR* ) |
106 |
105
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` ( j + 1 ) ) e. RR* ) |
107 |
|
simpr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
108 |
|
ioogtlb |
|- ( ( ( S ` j ) e. RR* /\ ( S ` ( j + 1 ) ) e. RR* /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` j ) < s ) |
109 |
101 106 107 108
|
syl3anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` j ) < s ) |
110 |
39 71 37 100 109
|
lelttrd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> A < s ) |
111 |
104
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` ( j + 1 ) ) e. RR ) |
112 |
27 10
|
syl |
|- ( ch -> B e. RR ) |
113 |
112
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> B e. RR ) |
114 |
|
iooltub |
|- ( ( ( S ` j ) e. RR* /\ ( S ` ( j + 1 ) ) e. RR* /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s < ( S ` ( j + 1 ) ) ) |
115 |
101 106 107 114
|
syl3anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s < ( S ` ( j + 1 ) ) ) |
116 |
103 93
|
eleqtrd |
|- ( ch -> ( j + 1 ) e. dom S ) |
117 |
|
fvelrn |
|- ( ( Fun S /\ ( j + 1 ) e. dom S ) -> ( S ` ( j + 1 ) ) e. ran S ) |
118 |
90 116 117
|
syl2anc |
|- ( ch -> ( S ` ( j + 1 ) ) e. ran S ) |
119 |
88 118
|
sseldd |
|- ( ch -> ( S ` ( j + 1 ) ) e. ( A [,] B ) ) |
120 |
|
iccleub |
|- ( ( A e. RR* /\ B e. RR* /\ ( S ` ( j + 1 ) ) e. ( A [,] B ) ) -> ( S ` ( j + 1 ) ) <_ B ) |
121 |
31 34 119 120
|
syl3anc |
|- ( ch -> ( S ` ( j + 1 ) ) <_ B ) |
122 |
121
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( S ` ( j + 1 ) ) <_ B ) |
123 |
37 111 113 115 122
|
ltletrd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s < B ) |
124 |
32 35 37 110 123
|
eliood |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( A (,) B ) ) |
125 |
29 124
|
sselid |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( A [,] B ) ) |
126 |
1
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> F : RR --> RR ) |
127 |
2
|
adantr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> X e. RR ) |
128 |
9 10
|
iccssred |
|- ( ph -> ( A [,] B ) C_ RR ) |
129 |
128
|
sselda |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. RR ) |
130 |
127 129
|
readdcld |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( X + s ) e. RR ) |
131 |
126 130
|
ffvelrnd |
|- ( ( ph /\ s e. ( A [,] B ) ) -> ( F ` ( X + s ) ) e. RR ) |
132 |
28 125 131
|
syl2anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. RR ) |
133 |
132
|
recnd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( F ` ( X + s ) ) e. CC ) |
134 |
14
|
recnd |
|- ( ph -> C e. CC ) |
135 |
27 134
|
syl |
|- ( ch -> C e. CC ) |
136 |
135
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> C e. CC ) |
137 |
133 136
|
subcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( F ` ( X + s ) ) - C ) e. CC ) |
138 |
|
ioossre |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ RR |
139 |
138
|
a1i |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ RR ) |
140 |
139
|
sselda |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. RR ) |
141 |
140
|
recnd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. CC ) |
142 |
|
nne |
|- ( -. s =/= 0 <-> s = 0 ) |
143 |
142
|
biimpi |
|- ( -. s =/= 0 -> s = 0 ) |
144 |
143
|
eqcomd |
|- ( -. s =/= 0 -> 0 = s ) |
145 |
144
|
adantl |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ -. s =/= 0 ) -> 0 = s ) |
146 |
|
simpr |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s e. ( A [,] B ) ) |
147 |
146
|
adantr |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ -. s =/= 0 ) -> s e. ( A [,] B ) ) |
148 |
145 147
|
eqeltrd |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ -. s =/= 0 ) -> 0 e. ( A [,] B ) ) |
149 |
13
|
ad2antrr |
|- ( ( ( ph /\ s e. ( A [,] B ) ) /\ -. s =/= 0 ) -> -. 0 e. ( A [,] B ) ) |
150 |
148 149
|
condan |
|- ( ( ph /\ s e. ( A [,] B ) ) -> s =/= 0 ) |
151 |
28 125 150
|
syl2anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s =/= 0 ) |
152 |
137 141 151
|
divcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( ( F ` ( X + s ) ) - C ) / s ) e. CC ) |
153 |
|
2cnd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> 2 e. CC ) |
154 |
141
|
halfcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( s / 2 ) e. CC ) |
155 |
154
|
sincld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
156 |
153 155
|
mulcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
157 |
36
|
recnd |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> s e. CC ) |
158 |
157
|
adantl |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. CC ) |
159 |
158
|
halfcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( s / 2 ) e. CC ) |
160 |
159
|
sincld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( sin ` ( s / 2 ) ) e. CC ) |
161 |
|
2ne0 |
|- 2 =/= 0 |
162 |
161
|
a1i |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> 2 =/= 0 ) |
163 |
27 12
|
syl |
|- ( ch -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
164 |
163
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( A [,] B ) C_ ( -u _pi [,] _pi ) ) |
165 |
164 125
|
sseldd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( -u _pi [,] _pi ) ) |
166 |
|
fourierdlem44 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ s =/= 0 ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
167 |
165 151 166
|
syl2anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( sin ` ( s / 2 ) ) =/= 0 ) |
168 |
153 160 162 167
|
mulne0d |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) =/= 0 ) |
169 |
141 156 168
|
divcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. CC ) |
170 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - C ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - C ) ) |
171 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) |
172 |
151
|
neneqd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> -. s = 0 ) |
173 |
|
velsn |
|- ( s e. { 0 } <-> s = 0 ) |
174 |
172 173
|
sylnibr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> -. s e. { 0 } ) |
175 |
141 174
|
eldifd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( CC \ { 0 } ) ) |
176 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |
177 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> C ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> C ) |
178 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
179 |
178
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
180 |
|
pire |
|- _pi e. RR |
181 |
180
|
renegcli |
|- -u _pi e. RR |
182 |
181
|
a1i |
|- ( ph -> -u _pi e. RR ) |
183 |
182 2
|
readdcld |
|- ( ph -> ( -u _pi + X ) e. RR ) |
184 |
180
|
a1i |
|- ( ph -> _pi e. RR ) |
185 |
184 2
|
readdcld |
|- ( ph -> ( _pi + X ) e. RR ) |
186 |
183 185
|
iccssred |
|- ( ph -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
187 |
186
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
188 |
3 4 5
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
189 |
188
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
190 |
189 179
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
191 |
187 190
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
192 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
193 |
191 192
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
194 |
16
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
195 |
179 193 194
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
196 |
195 193
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
197 |
196
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
198 |
197
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
199 |
22 198
|
sylbi |
|- ( ch -> ( Q ` i ) e. RR ) |
200 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
201 |
200
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
202 |
201
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
203 |
16 202
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
204 |
203
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
205 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
206 |
205
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
207 |
206
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
208 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
209 |
208
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
210 |
189 209
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
211 |
187 210
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
212 |
211 192
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
213 |
204 207 209 212
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
214 |
213 212
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
215 |
214
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
216 |
215
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
217 |
22 216
|
sylbi |
|- ( ch -> ( Q ` ( i + 1 ) ) e. RR ) |
218 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
219 |
4 218
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
220 |
5 219
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
221 |
220
|
simprrd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) |
222 |
221
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) < ( V ` ( i + 1 ) ) ) |
223 |
191 211 192 222
|
ltsub1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) < ( ( V ` ( i + 1 ) ) - X ) ) |
224 |
223 195 213
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
225 |
224
|
adantlr |
|- ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
226 |
225
|
adantr |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
227 |
22 226
|
sylbi |
|- ( ch -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
228 |
22
|
biimpi |
|- ( ch -> ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
229 |
228
|
simplrd |
|- ( ch -> i e. ( 0 ..^ M ) ) |
230 |
27 229 191
|
syl2anc |
|- ( ch -> ( V ` i ) e. RR ) |
231 |
230
|
rexrd |
|- ( ch -> ( V ` i ) e. RR* ) |
232 |
231
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
233 |
27 229 211
|
syl2anc |
|- ( ch -> ( V ` ( i + 1 ) ) e. RR ) |
234 |
233
|
rexrd |
|- ( ch -> ( V ` ( i + 1 ) ) e. RR* ) |
235 |
234
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
236 |
27 2
|
syl |
|- ( ch -> X e. RR ) |
237 |
236
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> X e. RR ) |
238 |
|
elioore |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. RR ) |
239 |
238
|
adantl |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. RR ) |
240 |
237 239
|
readdcld |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. RR ) |
241 |
27 229 195
|
syl2anc |
|- ( ch -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
242 |
241
|
oveq2d |
|- ( ch -> ( X + ( Q ` i ) ) = ( X + ( ( V ` i ) - X ) ) ) |
243 |
236
|
recnd |
|- ( ch -> X e. CC ) |
244 |
230
|
recnd |
|- ( ch -> ( V ` i ) e. CC ) |
245 |
243 244
|
pncan3d |
|- ( ch -> ( X + ( ( V ` i ) - X ) ) = ( V ` i ) ) |
246 |
242 245
|
eqtr2d |
|- ( ch -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
247 |
246
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
248 |
199
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
249 |
199
|
rexrd |
|- ( ch -> ( Q ` i ) e. RR* ) |
250 |
249
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
251 |
217
|
rexrd |
|- ( ch -> ( Q ` ( i + 1 ) ) e. RR* ) |
252 |
251
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
253 |
|
simpr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
254 |
|
ioogtlb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
255 |
250 252 253 254
|
syl3anc |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < s ) |
256 |
248 239 237 255
|
ltadd2dd |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` i ) ) < ( X + s ) ) |
257 |
247 256
|
eqbrtrd |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
258 |
217
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
259 |
|
iooltub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
260 |
250 252 253 259
|
syl3anc |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
261 |
239 258 237 260
|
ltadd2dd |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
262 |
27 229 213
|
syl2anc |
|- ( ch -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
263 |
262
|
oveq2d |
|- ( ch -> ( X + ( Q ` ( i + 1 ) ) ) = ( X + ( ( V ` ( i + 1 ) ) - X ) ) ) |
264 |
233
|
recnd |
|- ( ch -> ( V ` ( i + 1 ) ) e. CC ) |
265 |
243 264
|
pncan3d |
|- ( ch -> ( X + ( ( V ` ( i + 1 ) ) - X ) ) = ( V ` ( i + 1 ) ) ) |
266 |
263 265
|
eqtrd |
|- ( ch -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
267 |
266
|
adantr |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
268 |
261 267
|
breqtrd |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
269 |
232 235 240 257 268
|
eliood |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
270 |
|
fvres |
|- ( ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
271 |
269 270
|
syl |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) = ( F ` ( X + s ) ) ) |
272 |
271
|
eqcomd |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( X + s ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) |
273 |
272
|
mpteq2dva |
|- ( ch -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) ) |
274 |
|
ioosscn |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ CC |
275 |
274
|
a1i |
|- ( ch -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ CC ) |
276 |
27 229 6
|
syl2anc |
|- ( ch -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
277 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
278 |
277
|
a1i |
|- ( ch -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
279 |
275 276 278 243 269
|
fourierdlem23 |
|- ( ch -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
280 |
273 279
|
eqeltrd |
|- ( ch -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
281 |
27 1
|
syl |
|- ( ch -> F : RR --> RR ) |
282 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
283 |
282
|
a1i |
|- ( ch -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
284 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |
285 |
|
ioossre |
|- ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR |
286 |
285
|
a1i |
|- ( ch -> ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) C_ RR ) |
287 |
239 260
|
ltned |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` ( i + 1 ) ) ) |
288 |
27 229 8
|
syl2anc |
|- ( ch -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
289 |
266
|
eqcomd |
|- ( ch -> ( V ` ( i + 1 ) ) = ( X + ( Q ` ( i + 1 ) ) ) ) |
290 |
289
|
oveq2d |
|- ( ch -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
291 |
288 290
|
eleqtrd |
|- ( ch -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` ( i + 1 ) ) ) ) ) |
292 |
217
|
recnd |
|- ( ch -> ( Q ` ( i + 1 ) ) e. CC ) |
293 |
281 236 283 284 269 286 287 291 292
|
fourierdlem53 |
|- ( ch -> L e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
294 |
64 69
|
ffvelrnd |
|- ( ch -> ( S ` j ) e. RR ) |
295 |
|
elfzoelz |
|- ( j e. ( 0 ..^ N ) -> j e. ZZ ) |
296 |
|
zre |
|- ( j e. ZZ -> j e. RR ) |
297 |
67 295 296
|
3syl |
|- ( ch -> j e. RR ) |
298 |
297
|
ltp1d |
|- ( ch -> j < ( j + 1 ) ) |
299 |
|
isorel |
|- ( ( S Isom < , < ( ( 0 ... N ) , T ) /\ ( j e. ( 0 ... N ) /\ ( j + 1 ) e. ( 0 ... N ) ) ) -> ( j < ( j + 1 ) <-> ( S ` j ) < ( S ` ( j + 1 ) ) ) ) |
300 |
59 69 103 299
|
syl12anc |
|- ( ch -> ( j < ( j + 1 ) <-> ( S ` j ) < ( S ` ( j + 1 ) ) ) ) |
301 |
298 300
|
mpbid |
|- ( ch -> ( S ` j ) < ( S ` ( j + 1 ) ) ) |
302 |
22
|
simprbi |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
303 |
|
eqid |
|- if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` ( j + 1 ) ) ) ) = if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` ( j + 1 ) ) ) ) |
304 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) u. { ( Q ` ( i + 1 ) ) } ) ) = ( ( TopOpen ` CCfld ) |`t ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) u. { ( Q ` ( i + 1 ) ) } ) ) |
305 |
199 217 227 280 293 294 104 301 302 303 304
|
fourierdlem33 |
|- ( ch -> if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` ( j + 1 ) ) ) ) e. ( ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
306 |
|
eqidd |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ) |
307 |
|
simpr |
|- ( ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) /\ s = ( S ` ( j + 1 ) ) ) -> s = ( S ` ( j + 1 ) ) ) |
308 |
307
|
oveq2d |
|- ( ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) /\ s = ( S ` ( j + 1 ) ) ) -> ( X + s ) = ( X + ( S ` ( j + 1 ) ) ) ) |
309 |
308
|
fveq2d |
|- ( ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) /\ s = ( S ` ( j + 1 ) ) ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) |
310 |
249
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
311 |
251
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
312 |
104
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( S ` ( j + 1 ) ) e. RR ) |
313 |
199 217 294 104 301 302
|
fourierdlem10 |
|- ( ch -> ( ( Q ` i ) <_ ( S ` j ) /\ ( S ` ( j + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) ) |
314 |
313
|
simpld |
|- ( ch -> ( Q ` i ) <_ ( S ` j ) ) |
315 |
199 294 104 314 301
|
lelttrd |
|- ( ch -> ( Q ` i ) < ( S ` ( j + 1 ) ) ) |
316 |
315
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < ( S ` ( j + 1 ) ) ) |
317 |
217
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
318 |
313
|
simprd |
|- ( ch -> ( S ` ( j + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
319 |
318
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( S ` ( j + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
320 |
|
neqne |
|- ( -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) -> ( S ` ( j + 1 ) ) =/= ( Q ` ( i + 1 ) ) ) |
321 |
320
|
necomd |
|- ( -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) =/= ( S ` ( j + 1 ) ) ) |
322 |
321
|
adantl |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= ( S ` ( j + 1 ) ) ) |
323 |
312 317 319 322
|
leneltd |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( S ` ( j + 1 ) ) < ( Q ` ( i + 1 ) ) ) |
324 |
310 311 312 316 323
|
eliood |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( S ` ( j + 1 ) ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
325 |
236 104
|
readdcld |
|- ( ch -> ( X + ( S ` ( j + 1 ) ) ) e. RR ) |
326 |
281 325
|
ffvelrnd |
|- ( ch -> ( F ` ( X + ( S ` ( j + 1 ) ) ) ) e. RR ) |
327 |
326
|
adantr |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( F ` ( X + ( S ` ( j + 1 ) ) ) ) e. RR ) |
328 |
306 309 324 327
|
fvmptd |
|- ( ( ch /\ -. ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` ( j + 1 ) ) ) = ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) |
329 |
328
|
ifeq2da |
|- ( ch -> if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` ( j + 1 ) ) ) ) = if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) ) |
330 |
302
|
resmptd |
|- ( ch -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ) |
331 |
330
|
oveq1d |
|- ( ch -> ( ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) = ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
332 |
305 329 331
|
3eltr3d |
|- ( ch -> if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
333 |
|
ax-resscn |
|- RR C_ CC |
334 |
139 333
|
sstrdi |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ CC ) |
335 |
104
|
recnd |
|- ( ch -> ( S ` ( j + 1 ) ) e. CC ) |
336 |
177 334 135 335
|
constlimc |
|- ( ch -> C e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> C ) limCC ( S ` ( j + 1 ) ) ) ) |
337 |
176 177 170 133 136 332 336
|
sublimc |
|- ( ch -> ( if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) - C ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - C ) ) limCC ( S ` ( j + 1 ) ) ) ) |
338 |
334 171 335
|
idlimc |
|- ( ch -> ( S ` ( j + 1 ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) limCC ( S ` ( j + 1 ) ) ) ) |
339 |
27 119
|
jca |
|- ( ch -> ( ph /\ ( S ` ( j + 1 ) ) e. ( A [,] B ) ) ) |
340 |
|
eleq1 |
|- ( s = ( S ` ( j + 1 ) ) -> ( s e. ( A [,] B ) <-> ( S ` ( j + 1 ) ) e. ( A [,] B ) ) ) |
341 |
340
|
anbi2d |
|- ( s = ( S ` ( j + 1 ) ) -> ( ( ph /\ s e. ( A [,] B ) ) <-> ( ph /\ ( S ` ( j + 1 ) ) e. ( A [,] B ) ) ) ) |
342 |
|
neeq1 |
|- ( s = ( S ` ( j + 1 ) ) -> ( s =/= 0 <-> ( S ` ( j + 1 ) ) =/= 0 ) ) |
343 |
341 342
|
imbi12d |
|- ( s = ( S ` ( j + 1 ) ) -> ( ( ( ph /\ s e. ( A [,] B ) ) -> s =/= 0 ) <-> ( ( ph /\ ( S ` ( j + 1 ) ) e. ( A [,] B ) ) -> ( S ` ( j + 1 ) ) =/= 0 ) ) ) |
344 |
343 150
|
vtoclg |
|- ( ( S ` ( j + 1 ) ) e. RR -> ( ( ph /\ ( S ` ( j + 1 ) ) e. ( A [,] B ) ) -> ( S ` ( j + 1 ) ) =/= 0 ) ) |
345 |
104 339 344
|
sylc |
|- ( ch -> ( S ` ( j + 1 ) ) =/= 0 ) |
346 |
170 171 23 137 175 337 338 345 151
|
divlimc |
|- ( ch -> ( ( if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) - C ) / ( S ` ( j + 1 ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) limCC ( S ` ( j + 1 ) ) ) ) |
347 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) |
348 |
153 160
|
mulcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. CC ) |
349 |
168
|
neneqd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> -. ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) |
350 |
|
2re |
|- 2 e. RR |
351 |
350
|
a1i |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> 2 e. RR ) |
352 |
36
|
rehalfcld |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( s / 2 ) e. RR ) |
353 |
352
|
resincld |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -> ( sin ` ( s / 2 ) ) e. RR ) |
354 |
353
|
adantl |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( sin ` ( s / 2 ) ) e. RR ) |
355 |
351 354
|
remulcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR ) |
356 |
|
elsng |
|- ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. RR -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } <-> ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) ) |
357 |
355 356
|
syl |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } <-> ( 2 x. ( sin ` ( s / 2 ) ) ) = 0 ) ) |
358 |
349 357
|
mtbird |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> -. ( 2 x. ( sin ` ( s / 2 ) ) ) e. { 0 } ) |
359 |
348 358
|
eldifd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( 2 x. ( sin ` ( s / 2 ) ) ) e. ( CC \ { 0 } ) ) |
360 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) |
361 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( sin ` ( s / 2 ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( sin ` ( s / 2 ) ) ) |
362 |
|
2cnd |
|- ( ch -> 2 e. CC ) |
363 |
360 334 362 335
|
constlimc |
|- ( ch -> 2 e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) limCC ( S ` ( j + 1 ) ) ) ) |
364 |
352
|
ad2antrl |
|- ( ( ch /\ ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) /\ ( s / 2 ) =/= ( ( S ` ( j + 1 ) ) / 2 ) ) ) -> ( s / 2 ) e. RR ) |
365 |
|
recn |
|- ( x e. RR -> x e. CC ) |
366 |
365
|
sincld |
|- ( x e. RR -> ( sin ` x ) e. CC ) |
367 |
366
|
adantl |
|- ( ( ch /\ x e. RR ) -> ( sin ` x ) e. CC ) |
368 |
|
eqid |
|- ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / 2 ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / 2 ) ) |
369 |
|
2cn |
|- 2 e. CC |
370 |
|
eldifsn |
|- ( 2 e. ( CC \ { 0 } ) <-> ( 2 e. CC /\ 2 =/= 0 ) ) |
371 |
369 161 370
|
mpbir2an |
|- 2 e. ( CC \ { 0 } ) |
372 |
371
|
a1i |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> 2 e. ( CC \ { 0 } ) ) |
373 |
161
|
a1i |
|- ( ch -> 2 =/= 0 ) |
374 |
171 360 368 158 372 338 363 373 162
|
divlimc |
|- ( ch -> ( ( S ` ( j + 1 ) ) / 2 ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / 2 ) ) limCC ( S ` ( j + 1 ) ) ) ) |
375 |
|
sinf |
|- sin : CC --> CC |
376 |
375
|
a1i |
|- ( T. -> sin : CC --> CC ) |
377 |
333
|
a1i |
|- ( T. -> RR C_ CC ) |
378 |
376 377
|
feqresmpt |
|- ( T. -> ( sin |` RR ) = ( x e. RR |-> ( sin ` x ) ) ) |
379 |
378
|
mptru |
|- ( sin |` RR ) = ( x e. RR |-> ( sin ` x ) ) |
380 |
|
resincncf |
|- ( sin |` RR ) e. ( RR -cn-> RR ) |
381 |
379 380
|
eqeltrri |
|- ( x e. RR |-> ( sin ` x ) ) e. ( RR -cn-> RR ) |
382 |
381
|
a1i |
|- ( ch -> ( x e. RR |-> ( sin ` x ) ) e. ( RR -cn-> RR ) ) |
383 |
104
|
rehalfcld |
|- ( ch -> ( ( S ` ( j + 1 ) ) / 2 ) e. RR ) |
384 |
|
fveq2 |
|- ( x = ( ( S ` ( j + 1 ) ) / 2 ) -> ( sin ` x ) = ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) |
385 |
382 383 384
|
cnmptlimc |
|- ( ch -> ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) e. ( ( x e. RR |-> ( sin ` x ) ) limCC ( ( S ` ( j + 1 ) ) / 2 ) ) ) |
386 |
|
fveq2 |
|- ( x = ( s / 2 ) -> ( sin ` x ) = ( sin ` ( s / 2 ) ) ) |
387 |
|
fveq2 |
|- ( ( s / 2 ) = ( ( S ` ( j + 1 ) ) / 2 ) -> ( sin ` ( s / 2 ) ) = ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) |
388 |
387
|
ad2antll |
|- ( ( ch /\ ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) /\ ( s / 2 ) = ( ( S ` ( j + 1 ) ) / 2 ) ) ) -> ( sin ` ( s / 2 ) ) = ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) |
389 |
364 367 374 385 386 388
|
limcco |
|- ( ch -> ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( sin ` ( s / 2 ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
390 |
360 361 347 153 160 363 389
|
mullimc |
|- ( ch -> ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
391 |
335
|
halfcld |
|- ( ch -> ( ( S ` ( j + 1 ) ) / 2 ) e. CC ) |
392 |
391
|
sincld |
|- ( ch -> ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) e. CC ) |
393 |
163 119
|
sseldd |
|- ( ch -> ( S ` ( j + 1 ) ) e. ( -u _pi [,] _pi ) ) |
394 |
|
fourierdlem44 |
|- ( ( ( S ` ( j + 1 ) ) e. ( -u _pi [,] _pi ) /\ ( S ` ( j + 1 ) ) =/= 0 ) -> ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) =/= 0 ) |
395 |
393 345 394
|
syl2anc |
|- ( ch -> ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) =/= 0 ) |
396 |
362 392 373 395
|
mulne0d |
|- ( ch -> ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) =/= 0 ) |
397 |
171 347 24 158 359 338 390 396 168
|
divlimc |
|- ( ch -> ( ( S ` ( j + 1 ) ) / ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
398 |
23 24 25 152 169 346 397
|
mullimc |
|- ( ch -> ( ( ( if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) - C ) / ( S ` ( j + 1 ) ) ) x. ( ( S ` ( j + 1 ) ) / ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
399 |
20
|
a1i |
|- ( ch -> D = ( ( ( if ( ( S ` ( j + 1 ) ) = ( Q ` ( i + 1 ) ) , L , ( F ` ( X + ( S ` ( j + 1 ) ) ) ) ) - C ) / ( S ` ( j + 1 ) ) ) x. ( ( S ` ( j + 1 ) ) / ( 2 x. ( sin ` ( ( S ` ( j + 1 ) ) / 2 ) ) ) ) ) ) |
400 |
15
|
reseq1i |
|- ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( ( s e. ( A [,] B ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) |
401 |
|
ioossicc |
|- ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) |
402 |
|
iccss |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( A <_ ( S ` j ) /\ ( S ` ( j + 1 ) ) <_ B ) ) -> ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
403 |
38 112 99 121 402
|
syl22anc |
|- ( ch -> ( ( S ` j ) [,] ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
404 |
401 403
|
sstrid |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( A [,] B ) ) |
405 |
404
|
resmptd |
|- ( ch -> ( ( s e. ( A [,] B ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
406 |
400 405
|
eqtrid |
|- ( ch -> ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) ) |
407 |
406
|
oveq1d |
|- ( ch -> ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) = ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
408 |
398 399 407
|
3eltr4d |
|- ( ch -> D e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
409 |
22 408
|
sylbir |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> D e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) ) |
410 |
248 255
|
gtned |
|- ( ( ch /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s =/= ( Q ` i ) ) |
411 |
27 229 7
|
syl2anc |
|- ( ch -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
412 |
246
|
oveq2d |
|- ( ch -> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
413 |
411 412
|
eleqtrd |
|- ( ch -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( X + ( Q ` i ) ) ) ) |
414 |
199
|
recnd |
|- ( ch -> ( Q ` i ) e. CC ) |
415 |
281 236 283 284 269 286 410 413 414
|
fourierdlem53 |
|- ( ch -> R e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( Q ` i ) ) ) |
416 |
|
eqid |
|- if ( ( S ` j ) = ( Q ` i ) , R , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` j ) ) ) = if ( ( S ` j ) = ( Q ` i ) , R , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` j ) ) ) |
417 |
|
eqid |
|- ( ( TopOpen ` CCfld ) |`t ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) = ( ( TopOpen ` CCfld ) |`t ( ( Q ` i ) [,) ( Q ` ( i + 1 ) ) ) ) |
418 |
199 217 227 280 415 294 104 301 302 416 417
|
fourierdlem32 |
|- ( ch -> if ( ( S ` j ) = ( Q ` i ) , R , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` j ) ) ) e. ( ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
419 |
|
eqidd |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ) |
420 |
|
oveq2 |
|- ( s = ( S ` j ) -> ( X + s ) = ( X + ( S ` j ) ) ) |
421 |
420
|
fveq2d |
|- ( s = ( S ` j ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( S ` j ) ) ) ) |
422 |
421
|
adantl |
|- ( ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) /\ s = ( S ` j ) ) -> ( F ` ( X + s ) ) = ( F ` ( X + ( S ` j ) ) ) ) |
423 |
249
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` i ) e. RR* ) |
424 |
251
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
425 |
294
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` j ) e. RR ) |
426 |
199
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` i ) e. RR ) |
427 |
314
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` i ) <_ ( S ` j ) ) |
428 |
|
neqne |
|- ( -. ( S ` j ) = ( Q ` i ) -> ( S ` j ) =/= ( Q ` i ) ) |
429 |
428
|
adantl |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` j ) =/= ( Q ` i ) ) |
430 |
426 425 427 429
|
leneltd |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` i ) < ( S ` j ) ) |
431 |
104
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` ( j + 1 ) ) e. RR ) |
432 |
217
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
433 |
301
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` j ) < ( S ` ( j + 1 ) ) ) |
434 |
318
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` ( j + 1 ) ) <_ ( Q ` ( i + 1 ) ) ) |
435 |
425 431 432 433 434
|
ltletrd |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` j ) < ( Q ` ( i + 1 ) ) ) |
436 |
423 424 425 430 435
|
eliood |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( S ` j ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
437 |
236 294
|
readdcld |
|- ( ch -> ( X + ( S ` j ) ) e. RR ) |
438 |
281 437
|
ffvelrnd |
|- ( ch -> ( F ` ( X + ( S ` j ) ) ) e. RR ) |
439 |
438
|
adantr |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( F ` ( X + ( S ` j ) ) ) e. RR ) |
440 |
419 422 436 439
|
fvmptd |
|- ( ( ch /\ -. ( S ` j ) = ( Q ` i ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` j ) ) = ( F ` ( X + ( S ` j ) ) ) ) |
441 |
440
|
ifeq2da |
|- ( ch -> if ( ( S ` j ) = ( Q ` i ) , R , ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) ` ( S ` j ) ) ) = if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) ) |
442 |
330
|
oveq1d |
|- ( ch -> ( ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` ( X + s ) ) ) |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) = ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( S ` j ) ) ) |
443 |
418 441 442
|
3eltr3d |
|- ( ch -> if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) limCC ( S ` j ) ) ) |
444 |
294
|
recnd |
|- ( ch -> ( S ` j ) e. CC ) |
445 |
177 334 135 444
|
constlimc |
|- ( ch -> C e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> C ) limCC ( S ` j ) ) ) |
446 |
176 177 170 133 136 443 445
|
sublimc |
|- ( ch -> ( if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) - C ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - C ) ) limCC ( S ` j ) ) ) |
447 |
334 171 444
|
idlimc |
|- ( ch -> ( S ` j ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) limCC ( S ` j ) ) ) |
448 |
27 97
|
jca |
|- ( ch -> ( ph /\ ( S ` j ) e. ( A [,] B ) ) ) |
449 |
|
eleq1 |
|- ( s = ( S ` j ) -> ( s e. ( A [,] B ) <-> ( S ` j ) e. ( A [,] B ) ) ) |
450 |
449
|
anbi2d |
|- ( s = ( S ` j ) -> ( ( ph /\ s e. ( A [,] B ) ) <-> ( ph /\ ( S ` j ) e. ( A [,] B ) ) ) ) |
451 |
|
neeq1 |
|- ( s = ( S ` j ) -> ( s =/= 0 <-> ( S ` j ) =/= 0 ) ) |
452 |
450 451
|
imbi12d |
|- ( s = ( S ` j ) -> ( ( ( ph /\ s e. ( A [,] B ) ) -> s =/= 0 ) <-> ( ( ph /\ ( S ` j ) e. ( A [,] B ) ) -> ( S ` j ) =/= 0 ) ) ) |
453 |
452 150
|
vtoclg |
|- ( ( S ` j ) e. ( A [,] B ) -> ( ( ph /\ ( S ` j ) e. ( A [,] B ) ) -> ( S ` j ) =/= 0 ) ) |
454 |
97 448 453
|
sylc |
|- ( ch -> ( S ` j ) =/= 0 ) |
455 |
170 171 23 137 175 446 447 454 151
|
divlimc |
|- ( ch -> ( ( if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) - C ) / ( S ` j ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) limCC ( S ` j ) ) ) |
456 |
360 334 362 444
|
constlimc |
|- ( ch -> 2 e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) limCC ( S ` j ) ) ) |
457 |
352
|
ad2antrl |
|- ( ( ch /\ ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) /\ ( s / 2 ) =/= ( ( S ` j ) / 2 ) ) ) -> ( s / 2 ) e. RR ) |
458 |
171 360 368 158 372 447 456 373 162
|
divlimc |
|- ( ch -> ( ( S ` j ) / 2 ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / 2 ) ) limCC ( S ` j ) ) ) |
459 |
294
|
rehalfcld |
|- ( ch -> ( ( S ` j ) / 2 ) e. RR ) |
460 |
|
fveq2 |
|- ( x = ( ( S ` j ) / 2 ) -> ( sin ` x ) = ( sin ` ( ( S ` j ) / 2 ) ) ) |
461 |
382 459 460
|
cnmptlimc |
|- ( ch -> ( sin ` ( ( S ` j ) / 2 ) ) e. ( ( x e. RR |-> ( sin ` x ) ) limCC ( ( S ` j ) / 2 ) ) ) |
462 |
|
fveq2 |
|- ( ( s / 2 ) = ( ( S ` j ) / 2 ) -> ( sin ` ( s / 2 ) ) = ( sin ` ( ( S ` j ) / 2 ) ) ) |
463 |
462
|
ad2antll |
|- ( ( ch /\ ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) /\ ( s / 2 ) = ( ( S ` j ) / 2 ) ) ) -> ( sin ` ( s / 2 ) ) = ( sin ` ( ( S ` j ) / 2 ) ) ) |
464 |
457 367 458 461 386 463
|
limcco |
|- ( ch -> ( sin ` ( ( S ` j ) / 2 ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( sin ` ( s / 2 ) ) ) limCC ( S ` j ) ) ) |
465 |
360 361 347 153 160 456 464
|
mullimc |
|- ( ch -> ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) limCC ( S ` j ) ) ) |
466 |
444
|
halfcld |
|- ( ch -> ( ( S ` j ) / 2 ) e. CC ) |
467 |
466
|
sincld |
|- ( ch -> ( sin ` ( ( S ` j ) / 2 ) ) e. CC ) |
468 |
163 97
|
sseldd |
|- ( ch -> ( S ` j ) e. ( -u _pi [,] _pi ) ) |
469 |
|
fourierdlem44 |
|- ( ( ( S ` j ) e. ( -u _pi [,] _pi ) /\ ( S ` j ) =/= 0 ) -> ( sin ` ( ( S ` j ) / 2 ) ) =/= 0 ) |
470 |
468 454 469
|
syl2anc |
|- ( ch -> ( sin ` ( ( S ` j ) / 2 ) ) =/= 0 ) |
471 |
362 467 373 470
|
mulne0d |
|- ( ch -> ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) =/= 0 ) |
472 |
171 347 24 158 359 447 465 471 168
|
divlimc |
|- ( ch -> ( ( S ` j ) / ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) limCC ( S ` j ) ) ) |
473 |
23 24 25 152 169 455 472
|
mullimc |
|- ( ch -> ( ( ( if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) - C ) / ( S ` j ) ) x. ( ( S ` j ) / ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) ) ) e. ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC ( S ` j ) ) ) |
474 |
21
|
a1i |
|- ( ch -> E = ( ( ( if ( ( S ` j ) = ( Q ` i ) , R , ( F ` ( X + ( S ` j ) ) ) ) - C ) / ( S ` j ) ) x. ( ( S ` j ) / ( 2 x. ( sin ` ( ( S ` j ) / 2 ) ) ) ) ) ) |
475 |
406
|
oveq1d |
|- ( ch -> ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) = ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) limCC ( S ` j ) ) ) |
476 |
473 474 475
|
3eltr4d |
|- ( ch -> E e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
477 |
22 476
|
sylbir |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> E e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) |
478 |
302
|
sselda |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
479 |
478 272
|
syldan |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( F ` ( X + s ) ) = ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) |
480 |
479
|
mpteq2dva |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) = ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) ) |
481 |
231
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( V ` i ) e. RR* ) |
482 |
234
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( V ` ( i + 1 ) ) e. RR* ) |
483 |
236
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> X e. RR ) |
484 |
483 140
|
readdcld |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + s ) e. RR ) |
485 |
246
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( V ` i ) = ( X + ( Q ` i ) ) ) |
486 |
199
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
487 |
249
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
488 |
251
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
489 |
487 488 478 254
|
syl3anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( Q ` i ) < s ) |
490 |
486 37 483 489
|
ltadd2dd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + ( Q ` i ) ) < ( X + s ) ) |
491 |
485 490
|
eqbrtrd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( V ` i ) < ( X + s ) ) |
492 |
217
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
493 |
487 488 478 259
|
syl3anc |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> s < ( Q ` ( i + 1 ) ) ) |
494 |
37 492 483 493
|
ltadd2dd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + s ) < ( X + ( Q ` ( i + 1 ) ) ) ) |
495 |
266
|
adantr |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + ( Q ` ( i + 1 ) ) ) = ( V ` ( i + 1 ) ) ) |
496 |
494 495
|
breqtrd |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + s ) < ( V ` ( i + 1 ) ) ) |
497 |
481 482 484 491 496
|
eliood |
|- ( ( ch /\ s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) -> ( X + s ) e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
498 |
275 276 334 243 497
|
fourierdlem23 |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ` ( X + s ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
499 |
480 498
|
eqeltrd |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( F ` ( X + s ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
500 |
|
ssid |
|- CC C_ CC |
501 |
500
|
a1i |
|- ( ch -> CC C_ CC ) |
502 |
334 135 501
|
constcncfg |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> C ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
503 |
499 502
|
subcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( F ` ( X + s ) ) - C ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
504 |
175
|
ralrimiva |
|- ( ch -> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) s e. ( CC \ { 0 } ) ) |
505 |
|
dfss3 |
|- ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( CC \ { 0 } ) <-> A. s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) s e. ( CC \ { 0 } ) ) |
506 |
504 505
|
sylibr |
|- ( ch -> ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( CC \ { 0 } ) ) |
507 |
|
difssd |
|- ( ch -> ( CC \ { 0 } ) C_ CC ) |
508 |
506 507
|
idcncfg |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> ( CC \ { 0 } ) ) ) |
509 |
503 508
|
divcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( F ` ( X + s ) ) - C ) / s ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
510 |
334 501
|
idcncfg |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> s ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
511 |
359 347
|
fmptd |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> ( CC \ { 0 } ) ) |
512 |
334 362 501
|
constcncfg |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
513 |
|
sincn |
|- sin e. ( CC -cn-> CC ) |
514 |
513
|
a1i |
|- ( ch -> sin e. ( CC -cn-> CC ) ) |
515 |
371
|
a1i |
|- ( ch -> 2 e. ( CC \ { 0 } ) ) |
516 |
334 515 507
|
constcncfg |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> 2 ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> ( CC \ { 0 } ) ) ) |
517 |
510 516
|
divcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / 2 ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
518 |
514 517
|
cncfmpt1f |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( sin ` ( s / 2 ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
519 |
512 518
|
mulcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
520 |
|
cncffvrn |
|- ( ( ( CC \ { 0 } ) C_ CC /\ ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) -> ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> ( CC \ { 0 } ) ) <-> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> ( CC \ { 0 } ) ) ) |
521 |
507 519 520
|
syl2anc |
|- ( ch -> ( ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> ( CC \ { 0 } ) ) <-> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) : ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) --> ( CC \ { 0 } ) ) ) |
522 |
511 521
|
mpbird |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( 2 x. ( sin ` ( s / 2 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> ( CC \ { 0 } ) ) ) |
523 |
510 522
|
divcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
524 |
509 523
|
mulcncf |
|- ( ch -> ( s e. ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) |-> ( ( ( ( F ` ( X + s ) ) - C ) / s ) x. ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
525 |
406 524
|
eqeltrd |
|- ( ch -> ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
526 |
22 525
|
sylbir |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) |
527 |
409 477 526
|
jca31 |
|- ( ( ( ( ph /\ j e. ( 0 ..^ N ) ) /\ i e. ( 0 ..^ M ) ) /\ ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) C_ ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( D e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` ( j + 1 ) ) ) /\ E e. ( ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) limCC ( S ` j ) ) ) /\ ( O |` ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) ) e. ( ( ( S ` j ) (,) ( S ` ( j + 1 ) ) ) -cn-> CC ) ) ) |