Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem81.a |
|- ( ph -> A e. RR ) |
2 |
|
fourierdlem81.b |
|- ( ph -> B e. RR ) |
3 |
|
fourierdlem81.p |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = A /\ ( p ` m ) = B ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
4 |
|
fourierdlem81.m |
|- ( ph -> M e. NN ) |
5 |
|
fourierdlem81.t |
|- ( ph -> T e. RR+ ) |
6 |
|
fourierdlem81.q |
|- ( ph -> Q e. ( P ` M ) ) |
7 |
|
fourierdlem81.fper |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
8 |
|
fourierdlem81.s |
|- S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) |
9 |
|
fourierdlem81.f |
|- ( ph -> F : RR --> CC ) |
10 |
|
fourierdlem81.cncf |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
11 |
|
fourierdlem81.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
12 |
|
fourierdlem81.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
13 |
|
fourierdlem81.g |
|- G = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) |
14 |
|
fourierdlem81.h |
|- H = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> ( G ` ( x - T ) ) ) |
15 |
3
|
fourierdlem2 |
|- ( M e. NN -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
16 |
4 15
|
syl |
|- ( ph -> ( Q e. ( P ` M ) <-> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) ) |
17 |
6 16
|
mpbid |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) ) |
18 |
17
|
simprd |
|- ( ph -> ( ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) /\ A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) ) |
19 |
18
|
simpld |
|- ( ph -> ( ( Q ` 0 ) = A /\ ( Q ` M ) = B ) ) |
20 |
19
|
simpld |
|- ( ph -> ( Q ` 0 ) = A ) |
21 |
20
|
eqcomd |
|- ( ph -> A = ( Q ` 0 ) ) |
22 |
19
|
simprd |
|- ( ph -> ( Q ` M ) = B ) |
23 |
22
|
eqcomd |
|- ( ph -> B = ( Q ` M ) ) |
24 |
21 23
|
oveq12d |
|- ( ph -> ( A [,] B ) = ( ( Q ` 0 ) [,] ( Q ` M ) ) ) |
25 |
24
|
itgeq1d |
|- ( ph -> S. ( A [,] B ) ( F ` x ) _d x = S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` x ) _d x ) |
26 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
27 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
28 |
|
0p1e1 |
|- ( 0 + 1 ) = 1 |
29 |
28
|
fveq2i |
|- ( ZZ>= ` ( 0 + 1 ) ) = ( ZZ>= ` 1 ) |
30 |
27 29
|
eqtr4i |
|- NN = ( ZZ>= ` ( 0 + 1 ) ) |
31 |
4 30
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` ( 0 + 1 ) ) ) |
32 |
17
|
simpld |
|- ( ph -> Q e. ( RR ^m ( 0 ... M ) ) ) |
33 |
|
reex |
|- RR e. _V |
34 |
33
|
a1i |
|- ( ph -> RR e. _V ) |
35 |
|
ovex |
|- ( 0 ... M ) e. _V |
36 |
35
|
a1i |
|- ( ph -> ( 0 ... M ) e. _V ) |
37 |
34 36
|
elmapd |
|- ( ph -> ( Q e. ( RR ^m ( 0 ... M ) ) <-> Q : ( 0 ... M ) --> RR ) ) |
38 |
32 37
|
mpbid |
|- ( ph -> Q : ( 0 ... M ) --> RR ) |
39 |
18
|
simprd |
|- ( ph -> A. i e. ( 0 ..^ M ) ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
40 |
39
|
r19.21bi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) < ( Q ` ( i + 1 ) ) ) |
41 |
9
|
adantr |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> F : RR --> CC ) |
42 |
20 1
|
eqeltrd |
|- ( ph -> ( Q ` 0 ) e. RR ) |
43 |
22 2
|
eqeltrd |
|- ( ph -> ( Q ` M ) e. RR ) |
44 |
42 43
|
iccssred |
|- ( ph -> ( ( Q ` 0 ) [,] ( Q ` M ) ) C_ RR ) |
45 |
44
|
sselda |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> x e. RR ) |
46 |
41 45
|
ffvelrnd |
|- ( ( ph /\ x e. ( ( Q ` 0 ) [,] ( Q ` M ) ) ) -> ( F ` x ) e. CC ) |
47 |
38
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> RR ) |
48 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
49 |
48
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
50 |
47 49
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
51 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
52 |
51
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
53 |
47 52
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
54 |
9
|
feqmptd |
|- ( ph -> F = ( x e. RR |-> ( F ` x ) ) ) |
55 |
54
|
reseq1d |
|- ( ph -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
56 |
55
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
57 |
|
ioossre |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR |
58 |
57
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ RR ) |
59 |
58
|
resmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( x e. RR |-> ( F ` x ) ) |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
60 |
56 59
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) = ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
61 |
50 53 10 12 11
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. L^1 ) |
62 |
60 61
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
63 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> F : RR --> CC ) |
64 |
50 53
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ RR ) |
65 |
64
|
sselda |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. RR ) |
66 |
63 65
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
67 |
50 53 62 66
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
68 |
26 31 38 40 46 67
|
itgspltprt |
|- ( ph -> S. ( ( Q ` 0 ) [,] ( Q ` M ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
69 |
8
|
a1i |
|- ( ph -> S = ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) ) |
70 |
|
fveq2 |
|- ( i = 0 -> ( Q ` i ) = ( Q ` 0 ) ) |
71 |
70
|
oveq1d |
|- ( i = 0 -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
72 |
71
|
adantl |
|- ( ( ph /\ i = 0 ) -> ( ( Q ` i ) + T ) = ( ( Q ` 0 ) + T ) ) |
73 |
4
|
nnnn0d |
|- ( ph -> M e. NN0 ) |
74 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
75 |
73 74
|
eleqtrdi |
|- ( ph -> M e. ( ZZ>= ` 0 ) ) |
76 |
|
eluzfz1 |
|- ( M e. ( ZZ>= ` 0 ) -> 0 e. ( 0 ... M ) ) |
77 |
75 76
|
syl |
|- ( ph -> 0 e. ( 0 ... M ) ) |
78 |
5
|
rpred |
|- ( ph -> T e. RR ) |
79 |
42 78
|
readdcld |
|- ( ph -> ( ( Q ` 0 ) + T ) e. RR ) |
80 |
69 72 77 79
|
fvmptd |
|- ( ph -> ( S ` 0 ) = ( ( Q ` 0 ) + T ) ) |
81 |
20
|
oveq1d |
|- ( ph -> ( ( Q ` 0 ) + T ) = ( A + T ) ) |
82 |
80 81
|
eqtr2d |
|- ( ph -> ( A + T ) = ( S ` 0 ) ) |
83 |
|
fveq2 |
|- ( i = M -> ( Q ` i ) = ( Q ` M ) ) |
84 |
83
|
oveq1d |
|- ( i = M -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
85 |
84
|
adantl |
|- ( ( ph /\ i = M ) -> ( ( Q ` i ) + T ) = ( ( Q ` M ) + T ) ) |
86 |
|
eluzfz2 |
|- ( M e. ( ZZ>= ` 0 ) -> M e. ( 0 ... M ) ) |
87 |
75 86
|
syl |
|- ( ph -> M e. ( 0 ... M ) ) |
88 |
43 78
|
readdcld |
|- ( ph -> ( ( Q ` M ) + T ) e. RR ) |
89 |
69 85 87 88
|
fvmptd |
|- ( ph -> ( S ` M ) = ( ( Q ` M ) + T ) ) |
90 |
22
|
oveq1d |
|- ( ph -> ( ( Q ` M ) + T ) = ( B + T ) ) |
91 |
89 90
|
eqtr2d |
|- ( ph -> ( B + T ) = ( S ` M ) ) |
92 |
82 91
|
oveq12d |
|- ( ph -> ( ( A + T ) [,] ( B + T ) ) = ( ( S ` 0 ) [,] ( S ` M ) ) ) |
93 |
92
|
itgeq1d |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( ( S ` 0 ) [,] ( S ` M ) ) ( F ` x ) _d x ) |
94 |
38
|
ffvelrnda |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( Q ` i ) e. RR ) |
95 |
78
|
adantr |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> T e. RR ) |
96 |
94 95
|
readdcld |
|- ( ( ph /\ i e. ( 0 ... M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
97 |
96 8
|
fmptd |
|- ( ph -> S : ( 0 ... M ) --> RR ) |
98 |
78
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR ) |
99 |
50 53 98 40
|
ltadd1dd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
100 |
48 96
|
sylan2 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) e. RR ) |
101 |
8
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( Q ` i ) + T ) e. RR ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
102 |
49 100 101
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
103 |
|
fveq2 |
|- ( i = j -> ( Q ` i ) = ( Q ` j ) ) |
104 |
103
|
oveq1d |
|- ( i = j -> ( ( Q ` i ) + T ) = ( ( Q ` j ) + T ) ) |
105 |
104
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( Q ` i ) + T ) ) = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
106 |
8 105
|
eqtri |
|- S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) |
107 |
106
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S = ( j e. ( 0 ... M ) |-> ( ( Q ` j ) + T ) ) ) |
108 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( Q ` j ) = ( Q ` ( i + 1 ) ) ) |
109 |
108
|
oveq1d |
|- ( j = ( i + 1 ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
110 |
109
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( Q ` j ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
111 |
53 98
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
112 |
107 110 52 111
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
113 |
99 102 112
|
3brtr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) < ( S ` ( i + 1 ) ) ) |
114 |
9
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> F : RR --> CC ) |
115 |
80 79
|
eqeltrd |
|- ( ph -> ( S ` 0 ) e. RR ) |
116 |
115
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( S ` 0 ) e. RR ) |
117 |
89 88
|
eqeltrd |
|- ( ph -> ( S ` M ) e. RR ) |
118 |
117
|
adantr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( S ` M ) e. RR ) |
119 |
116 118
|
iccssred |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( ( S ` 0 ) [,] ( S ` M ) ) C_ RR ) |
120 |
|
simpr |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) |
121 |
119 120
|
sseldd |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> x e. RR ) |
122 |
114 121
|
ffvelrnd |
|- ( ( ph /\ x e. ( ( S ` 0 ) [,] ( S ` M ) ) ) -> ( F ` x ) e. CC ) |
123 |
102 100
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) e. RR ) |
124 |
112 111
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
125 |
|
ioosscn |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC |
126 |
125
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ CC ) |
127 |
|
eqeq1 |
|- ( w = x -> ( w = ( z + T ) <-> x = ( z + T ) ) ) |
128 |
127
|
rexbidv |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
129 |
|
oveq1 |
|- ( z = y -> ( z + T ) = ( y + T ) ) |
130 |
129
|
eqeq2d |
|- ( z = y -> ( x = ( z + T ) <-> x = ( y + T ) ) ) |
131 |
130
|
cbvrexvw |
|- ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) |
132 |
128 131
|
bitrdi |
|- ( w = x -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) <-> E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) ) ) |
133 |
132
|
cbvrabv |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { x e. CC | E. y e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( y + T ) } |
134 |
|
fdm |
|- ( F : RR --> CC -> dom F = RR ) |
135 |
9 134
|
syl |
|- ( ph -> dom F = RR ) |
136 |
135
|
feq2d |
|- ( ph -> ( F : dom F --> CC <-> F : RR --> CC ) ) |
137 |
9 136
|
mpbird |
|- ( ph -> F : dom F --> CC ) |
138 |
137
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : dom F --> CC ) |
139 |
|
elioore |
|- ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> z e. RR ) |
140 |
139
|
adantl |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
141 |
78
|
adantr |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> T e. RR ) |
142 |
140 141
|
readdcld |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) e. RR ) |
143 |
142
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) e. RR ) |
144 |
143
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> ( z + T ) e. RR ) |
145 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> w = ( z + T ) ) |
146 |
135
|
3ad2ant1 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> dom F = RR ) |
147 |
146
|
3adant1r |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> dom F = RR ) |
148 |
144 145 147
|
3eltr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ w = ( z + T ) ) -> w e. dom F ) |
149 |
148
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( z + T ) -> w e. dom F ) ) ) |
150 |
149
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. CC ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( w = ( z + T ) -> w e. dom F ) ) ) |
151 |
150
|
rexlimdv |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w e. CC ) -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
152 |
151
|
ralrimiva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A. w e. CC ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
153 |
|
rabss |
|- ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F <-> A. w e. CC ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) -> w e. dom F ) ) |
154 |
152 153
|
sylibr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } C_ dom F ) |
155 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
156 |
1
|
rexrd |
|- ( ph -> A e. RR* ) |
157 |
156
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
158 |
2
|
rexrd |
|- ( ph -> B e. RR* ) |
159 |
158
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
160 |
3 4 6
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
161 |
160
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
162 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
163 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
164 |
163
|
sseli |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
165 |
164
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
166 |
157 159 161 162 165
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> x e. ( A [,] B ) ) |
167 |
155 166 7
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) |
168 |
126 98 133 138 154 167 10
|
cncfperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) e. ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) ) |
169 |
128
|
elrab |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } <-> ( x e. CC /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) ) |
170 |
169
|
simprbi |
|- ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
171 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
172 |
|
nfv |
|- F/ z ( ph /\ i e. ( 0 ..^ M ) ) |
173 |
|
nfre1 |
|- F/ z E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) |
174 |
172 173
|
nfan |
|- F/ z ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
175 |
|
nfv |
|- F/ z ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) |
176 |
|
simp3 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
177 |
142
|
3adant3 |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( z + T ) e. RR ) |
178 |
176 177
|
eqeltrd |
|- ( ( ph /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x e. RR ) |
179 |
178
|
3adant1r |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x e. RR ) |
180 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
181 |
139
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. RR ) |
182 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> T e. RR ) |
183 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
184 |
50
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR* ) |
185 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
186 |
53
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
187 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
188 |
|
elioo2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) ) |
189 |
185 187 188
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) ) |
190 |
183 189
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z e. RR /\ ( Q ` i ) < z /\ z < ( Q ` ( i + 1 ) ) ) ) |
191 |
190
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) < z ) |
192 |
180 181 182 191
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) + T ) < ( z + T ) ) |
193 |
192
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( ( Q ` i ) + T ) < ( z + T ) ) |
194 |
102
|
3ad2ant1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` i ) = ( ( Q ` i ) + T ) ) |
195 |
|
simp3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x = ( z + T ) ) |
196 |
193 194 195
|
3brtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` i ) < x ) |
197 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
198 |
190
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z < ( Q ` ( i + 1 ) ) ) |
199 |
181 197 182 198
|
ltadd1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( z + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
200 |
199
|
3adant3 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( z + T ) < ( ( Q ` ( i + 1 ) ) + T ) ) |
201 |
112
|
3ad2ant1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( S ` ( i + 1 ) ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
202 |
200 195 201
|
3brtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> x < ( S ` ( i + 1 ) ) ) |
203 |
179 196 202
|
3jca |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( z + T ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
204 |
203
|
3exp |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) ) |
205 |
204
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) ) |
206 |
174 175 205
|
rexlimd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
207 |
171 206
|
mpd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
208 |
123
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` i ) e. RR* ) |
209 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( S ` i ) e. RR* ) |
210 |
124
|
rexrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
211 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
212 |
|
elioo2 |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
213 |
209 211 212
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
214 |
207 213
|
mpbird |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
215 |
170 214
|
sylan2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
216 |
|
elioore |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. RR ) |
217 |
216
|
recnd |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. CC ) |
218 |
217
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
219 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
220 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
221 |
216
|
adantl |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
222 |
78
|
adantr |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
223 |
221 222
|
resubcld |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
224 |
223
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
225 |
102
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) = ( ( ( Q ` i ) + T ) - T ) ) |
226 |
50
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. CC ) |
227 |
98
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. CC ) |
228 |
226 227
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) - T ) = ( Q ` i ) ) |
229 |
225 228
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
230 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
231 |
123
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR ) |
232 |
216
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
233 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
234 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
235 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR* ) |
236 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
237 |
235 236 212
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) <-> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) ) |
238 |
234 237
|
mpbid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x e. RR /\ ( S ` i ) < x /\ x < ( S ` ( i + 1 ) ) ) ) |
239 |
238
|
simp2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) < x ) |
240 |
231 232 233 239
|
ltsub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( S ` i ) - T ) < ( x - T ) ) |
241 |
230 240
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) < ( x - T ) ) |
242 |
124
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
243 |
238
|
simp3d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x < ( S ` ( i + 1 ) ) ) |
244 |
232 242 233 243
|
ltsub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) < ( ( S ` ( i + 1 ) ) - T ) ) |
245 |
112
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
246 |
53
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. CC ) |
247 |
246 227
|
pncand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
248 |
245 247
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
249 |
248
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
250 |
244 249
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
251 |
219 220 224 241 250
|
eliood |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
252 |
221
|
recnd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
253 |
222
|
recnd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> T e. CC ) |
254 |
252 253
|
npcand |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) + T ) = x ) |
255 |
254
|
eqcomd |
|- ( ( ph /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
256 |
255
|
adantlr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
257 |
|
oveq1 |
|- ( z = ( x - T ) -> ( z + T ) = ( ( x - T ) + T ) ) |
258 |
257
|
eqeq2d |
|- ( z = ( x - T ) -> ( x = ( z + T ) <-> x = ( ( x - T ) + T ) ) ) |
259 |
258
|
rspcev |
|- ( ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) /\ x = ( ( x - T ) + T ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
260 |
251 256 259
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) x = ( z + T ) ) |
261 |
218 260 169
|
sylanbrc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) |
262 |
215 261
|
impbida |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } <-> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
263 |
262
|
eqrdv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
264 |
263
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) = ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ) |
265 |
9
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> CC ) |
266 |
|
ioossre |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR |
267 |
266
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ RR ) |
268 |
265 267
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
269 |
264 268
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) = ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) ) |
270 |
263
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } -cn-> CC ) = ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
271 |
168 269 270
|
3eltr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. ( ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -cn-> CC ) ) |
272 |
57 135
|
sseqtrrid |
|- ( ph -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
273 |
272
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ dom F ) |
274 |
|
eqid |
|- { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } = { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } |
275 |
|
simpll |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ph ) |
276 |
156
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> A e. RR* ) |
277 |
158
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> B e. RR* ) |
278 |
160
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
279 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
280 |
163 183
|
sselid |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
281 |
276 277 278 279 280
|
fourierdlem1 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> z e. ( A [,] B ) ) |
282 |
|
eleq1 |
|- ( x = z -> ( x e. ( A [,] B ) <-> z e. ( A [,] B ) ) ) |
283 |
282
|
anbi2d |
|- ( x = z -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ z e. ( A [,] B ) ) ) ) |
284 |
|
oveq1 |
|- ( x = z -> ( x + T ) = ( z + T ) ) |
285 |
284
|
fveq2d |
|- ( x = z -> ( F ` ( x + T ) ) = ( F ` ( z + T ) ) ) |
286 |
|
fveq2 |
|- ( x = z -> ( F ` x ) = ( F ` z ) ) |
287 |
285 286
|
eqeq12d |
|- ( x = z -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( z + T ) ) = ( F ` z ) ) ) |
288 |
283 287
|
imbi12d |
|- ( x = z -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) ) ) |
289 |
288 7
|
chvarvv |
|- ( ( ph /\ z e. ( A [,] B ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
290 |
275 281 289
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( F ` ( z + T ) ) = ( F ` z ) ) |
291 |
138 126 273 227 274 154 290 12
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) ) |
292 |
112
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
293 |
269 292
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` ( i + 1 ) ) ) ) |
294 |
291 293
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` ( i + 1 ) ) ) ) |
295 |
138 126 273 227 274 154 290 11
|
limcperiod |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` i ) + T ) ) ) |
296 |
102
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
297 |
269 296
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( F |` { w e. CC | E. z e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) w = ( z + T ) } ) limCC ( ( Q ` i ) + T ) ) = ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` i ) ) ) |
298 |
295 297
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) limCC ( S ` i ) ) ) |
299 |
123 124 271 294 298
|
iblcncfioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
300 |
9
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> F : RR --> CC ) |
301 |
123
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR ) |
302 |
124
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
303 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
304 |
|
eliccre |
|- ( ( ( S ` i ) e. RR /\ ( S ` ( i + 1 ) ) e. RR /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
305 |
301 302 303 304
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. RR ) |
306 |
300 305
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` x ) e. CC ) |
307 |
123 124 299 306
|
ibliooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> ( F ` x ) ) e. L^1 ) |
308 |
26 31 97 113 122 307
|
itgspltprt |
|- ( ph -> S. ( ( S ` 0 ) [,] ( S ` M ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
309 |
|
iftrue |
|- ( x = ( S ` i ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
310 |
309
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
311 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = R ) |
312 |
|
iftrue |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = R ) |
313 |
311 312
|
eqtr4d |
|- ( x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
314 |
313
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
315 |
|
iffalse |
|- ( -. x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
316 |
315
|
adantr |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
317 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
318 |
317
|
adantl |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = L ) |
319 |
|
iffalse |
|- ( -. x = ( Q ` i ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
320 |
319
|
adantr |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
321 |
|
iftrue |
|- ( x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
322 |
321
|
adantl |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
323 |
320 322
|
eqtr2d |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> L = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
324 |
316 318 323
|
3eqtrd |
|- ( ( -. x = ( Q ` i ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
325 |
324
|
adantll |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
326 |
315
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) |
327 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
328 |
327
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) = ( F ` x ) ) |
329 |
319
|
ad2antlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) |
330 |
|
iffalse |
|- ( -. x = ( Q ` ( i + 1 ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
331 |
330
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) |
332 |
184
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
333 |
186
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
334 |
65
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. RR ) |
335 |
50
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR ) |
336 |
65
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. RR ) |
337 |
184
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) e. RR* ) |
338 |
186
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
339 |
|
simplr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
340 |
|
iccgelb |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ x ) |
341 |
337 338 339 340
|
syl3anc |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) <_ x ) |
342 |
|
neqne |
|- ( -. x = ( Q ` i ) -> x =/= ( Q ` i ) ) |
343 |
342
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> x =/= ( Q ` i ) ) |
344 |
335 336 341 343
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> ( Q ` i ) < x ) |
345 |
344
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) < x ) |
346 |
53
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
347 |
184
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR* ) |
348 |
186
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
349 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
350 |
|
iccleub |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
351 |
347 348 349 350
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
352 |
351
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x <_ ( Q ` ( i + 1 ) ) ) |
353 |
|
neqne |
|- ( -. x = ( Q ` ( i + 1 ) ) -> x =/= ( Q ` ( i + 1 ) ) ) |
354 |
353
|
necomd |
|- ( -. x = ( Q ` ( i + 1 ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
355 |
354
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= x ) |
356 |
334 346 352 355
|
leneltd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x < ( Q ` ( i + 1 ) ) ) |
357 |
332 333 334 345 356
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
358 |
|
fvres |
|- ( x e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
359 |
357 358
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
360 |
329 331 359
|
3eqtrrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> ( F ` x ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
361 |
326 328 360
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) /\ -. x = ( Q ` ( i + 1 ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
362 |
325 361
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) /\ -. x = ( Q ` i ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
363 |
314 362
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) = if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
364 |
363
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( F ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
365 |
13 364
|
syl5eq |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) ) |
366 |
|
eqeq1 |
|- ( x = w -> ( x = ( Q ` i ) <-> w = ( Q ` i ) ) ) |
367 |
|
eqeq1 |
|- ( x = w -> ( x = ( Q ` ( i + 1 ) ) <-> w = ( Q ` ( i + 1 ) ) ) ) |
368 |
|
fveq2 |
|- ( x = w -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) |
369 |
367 368
|
ifbieq2d |
|- ( x = w -> if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) = if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) |
370 |
366 369
|
ifbieq2d |
|- ( x = w -> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) |
371 |
370
|
cbvmptv |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) |
372 |
365 371
|
eqtrdi |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
373 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
374 |
|
simpr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> w = ( x - T ) ) |
375 |
|
oveq1 |
|- ( x = ( S ` i ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
376 |
375
|
ad2antlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
377 |
229
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) = ( Q ` i ) ) |
378 |
377
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> ( ( S ` i ) - T ) = ( Q ` i ) ) |
379 |
374 376 378
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> w = ( Q ` i ) ) |
380 |
379
|
iftrued |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = R ) |
381 |
375
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( x - T ) = ( ( S ` i ) - T ) ) |
382 |
50 53 40
|
ltled |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) |
383 |
|
lbicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
384 |
184 186 382 383
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
385 |
377 384
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
386 |
385
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( ( S ` i ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
387 |
381 386
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
388 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) C_ CC |
389 |
388 11
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. CC ) |
390 |
389
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> R e. CC ) |
391 |
373 380 387 390
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> ( G ` ( x - T ) ) = R ) |
392 |
310 391
|
eqtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
393 |
392
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
394 |
|
iffalse |
|- ( -. x = ( S ` i ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
395 |
394
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
396 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
397 |
|
eqeq1 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( w = ( Q ` i ) <-> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) ) ) |
398 |
|
eqeq1 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( w = ( Q ` ( i + 1 ) ) <-> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) ) |
399 |
|
fveq2 |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
400 |
398 399
|
ifbieq2d |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) |
401 |
397 400
|
ifbieq2d |
|- ( w = ( ( S ` ( i + 1 ) ) - T ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) ) |
402 |
401
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) ) |
403 |
|
eqeq1 |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) <-> ( Q ` ( i + 1 ) ) = ( Q ` i ) ) ) |
404 |
|
iftrue |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) = L ) |
405 |
403 404
|
ifbieq2d |
|- ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
406 |
248 405
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
407 |
406
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` i ) , R , if ( ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( ( S ` ( i + 1 ) ) - T ) ) ) ) = if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) ) |
408 |
50 40
|
gtned |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) =/= ( Q ` i ) ) |
409 |
408
|
neneqd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. ( Q ` ( i + 1 ) ) = ( Q ` i ) ) |
410 |
409
|
iffalsed |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) = L ) |
411 |
410
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( ( Q ` ( i + 1 ) ) = ( Q ` i ) , R , L ) = L ) |
412 |
402 407 411
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = L ) |
413 |
412
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) /\ w = ( ( S ` ( i + 1 ) ) - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = L ) |
414 |
|
ubicc2 |
|- ( ( ( Q ` i ) e. RR* /\ ( Q ` ( i + 1 ) ) e. RR* /\ ( Q ` i ) <_ ( Q ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
415 |
184 186 382 414
|
syl3anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
416 |
248 415
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` ( i + 1 ) ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
417 |
416
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
418 |
|
limccl |
|- ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) C_ CC |
419 |
418 12
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. CC ) |
420 |
419
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> L e. CC ) |
421 |
396 413 417 420
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( G ` ( ( S ` ( i + 1 ) ) - T ) ) = L ) |
422 |
|
oveq1 |
|- ( x = ( S ` ( i + 1 ) ) -> ( x - T ) = ( ( S ` ( i + 1 ) ) - T ) ) |
423 |
422
|
fveq2d |
|- ( x = ( S ` ( i + 1 ) ) -> ( G ` ( x - T ) ) = ( G ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
424 |
423
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( G ` ( ( S ` ( i + 1 ) ) - T ) ) ) |
425 |
|
iftrue |
|- ( x = ( S ` ( i + 1 ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
426 |
425
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = L ) |
427 |
421 424 426
|
3eqtr4rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
428 |
427
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
429 |
|
iffalse |
|- ( -. x = ( S ` ( i + 1 ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
430 |
429
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
431 |
372
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
432 |
431
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> G = ( w e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) ) ) |
433 |
|
eqeq1 |
|- ( w = ( x - T ) -> ( w = ( Q ` i ) <-> ( x - T ) = ( Q ` i ) ) ) |
434 |
|
eqeq1 |
|- ( w = ( x - T ) -> ( w = ( Q ` ( i + 1 ) ) <-> ( x - T ) = ( Q ` ( i + 1 ) ) ) ) |
435 |
|
fveq2 |
|- ( w = ( x - T ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
436 |
434 435
|
ifbieq2d |
|- ( w = ( x - T ) -> if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
437 |
433 436
|
ifbieq2d |
|- ( w = ( x - T ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) ) |
438 |
437
|
adantl |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) ) |
439 |
305
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x e. CC ) |
440 |
227
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> T e. CC ) |
441 |
439 440
|
npcand |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) + T ) = x ) |
442 |
441
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x = ( ( x - T ) + T ) ) |
443 |
442
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> x = ( ( x - T ) + T ) ) |
444 |
|
oveq1 |
|- ( ( x - T ) = ( Q ` i ) -> ( ( x - T ) + T ) = ( ( Q ` i ) + T ) ) |
445 |
444
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> ( ( x - T ) + T ) = ( ( Q ` i ) + T ) ) |
446 |
296
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> ( ( Q ` i ) + T ) = ( S ` i ) ) |
447 |
443 445 446
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` i ) ) -> x = ( S ` i ) ) |
448 |
447
|
stoic1a |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> -. ( x - T ) = ( Q ` i ) ) |
449 |
448
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
450 |
449
|
ad2antrr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( ( x - T ) = ( Q ` i ) , R , if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) = if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) ) |
451 |
442
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> x = ( ( x - T ) + T ) ) |
452 |
|
oveq1 |
|- ( ( x - T ) = ( Q ` ( i + 1 ) ) -> ( ( x - T ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
453 |
452
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> ( ( x - T ) + T ) = ( ( Q ` ( i + 1 ) ) + T ) ) |
454 |
292
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) = ( S ` ( i + 1 ) ) ) |
455 |
451 453 454
|
3eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ ( x - T ) = ( Q ` ( i + 1 ) ) ) -> x = ( S ` ( i + 1 ) ) ) |
456 |
455
|
stoic1a |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> -. ( x - T ) = ( Q ` ( i + 1 ) ) ) |
457 |
456
|
iffalsed |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
458 |
457
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
459 |
458
|
adantr |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( ( x - T ) = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
460 |
438 450 459
|
3eqtrd |
|- ( ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) /\ w = ( x - T ) ) -> if ( w = ( Q ` i ) , R , if ( w = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` w ) ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
461 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) e. RR ) |
462 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
463 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> T e. RR ) |
464 |
305 463
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. RR ) |
465 |
229
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) = ( ( S ` i ) - T ) ) |
466 |
208
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) e. RR* ) |
467 |
210
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
468 |
|
iccgelb |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) <_ x ) |
469 |
466 467 303 468
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( S ` i ) <_ x ) |
470 |
301 305 463 469
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( S ` i ) - T ) <_ ( x - T ) ) |
471 |
465 470
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( Q ` i ) <_ ( x - T ) ) |
472 |
|
iccleub |
|- ( ( ( S ` i ) e. RR* /\ ( S ` ( i + 1 ) ) e. RR* /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
473 |
466 467 303 472
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
474 |
305 302 463 473
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) <_ ( ( S ` ( i + 1 ) ) - T ) ) |
475 |
248
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( S ` ( i + 1 ) ) - T ) = ( Q ` ( i + 1 ) ) ) |
476 |
474 475
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
477 |
461 462 464 471 476
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
478 |
477
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
479 |
138 273
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
480 |
479
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) : ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) --> CC ) |
481 |
184
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` i ) e. RR* ) |
482 |
186
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR* ) |
483 |
305
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x e. RR ) |
484 |
98
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> T e. RR ) |
485 |
483 484
|
resubcld |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. RR ) |
486 |
50
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) e. RR ) |
487 |
464
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( x - T ) e. RR ) |
488 |
471
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) <_ ( x - T ) ) |
489 |
448
|
neqned |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( x - T ) =/= ( Q ` i ) ) |
490 |
486 487 488 489
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( Q ` i ) < ( x - T ) ) |
491 |
490
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` i ) < ( x - T ) ) |
492 |
464
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. RR ) |
493 |
53
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
494 |
476
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
495 |
|
eqcom |
|- ( ( x - T ) = ( Q ` ( i + 1 ) ) <-> ( Q ` ( i + 1 ) ) = ( x - T ) ) |
496 |
455
|
ex |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x - T ) = ( Q ` ( i + 1 ) ) -> x = ( S ` ( i + 1 ) ) ) ) |
497 |
495 496
|
syl5bir |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( Q ` ( i + 1 ) ) = ( x - T ) -> x = ( S ` ( i + 1 ) ) ) ) |
498 |
497
|
con3dimp |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> -. ( Q ` ( i + 1 ) ) = ( x - T ) ) |
499 |
498
|
neqned |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( Q ` ( i + 1 ) ) =/= ( x - T ) ) |
500 |
492 493 494 499
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
501 |
500
|
adantlr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) < ( Q ` ( i + 1 ) ) ) |
502 |
481 482 485 491 501
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
503 |
480 502
|
ffvelrnd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) e. CC ) |
504 |
432 460 478 503
|
fvmptd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) ) |
505 |
|
fvres |
|- ( ( x - T ) e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
506 |
502 505
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
507 |
504 506
|
eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( F ` ( x - T ) ) ) |
508 |
466
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` i ) e. RR* ) |
509 |
467
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) e. RR* ) |
510 |
123
|
ad2antrr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) e. RR ) |
511 |
305
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> x e. RR ) |
512 |
469
|
adantr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) <_ x ) |
513 |
|
neqne |
|- ( -. x = ( S ` i ) -> x =/= ( S ` i ) ) |
514 |
513
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> x =/= ( S ` i ) ) |
515 |
510 511 512 514
|
leneltd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> ( S ` i ) < x ) |
516 |
515
|
adantr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` i ) < x ) |
517 |
302
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) e. RR ) |
518 |
473
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x <_ ( S ` ( i + 1 ) ) ) |
519 |
|
neqne |
|- ( -. x = ( S ` ( i + 1 ) ) -> x =/= ( S ` ( i + 1 ) ) ) |
520 |
519
|
necomd |
|- ( -. x = ( S ` ( i + 1 ) ) -> ( S ` ( i + 1 ) ) =/= x ) |
521 |
520
|
adantl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( S ` ( i + 1 ) ) =/= x ) |
522 |
483 517 518 521
|
leneltd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x < ( S ` ( i + 1 ) ) ) |
523 |
508 509 483 516 522
|
eliood |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) |
524 |
|
fvres |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
525 |
523 524
|
syl |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
526 |
441
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` x ) ) |
527 |
526
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
528 |
527
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F ` x ) = ( F ` ( ( x - T ) + T ) ) ) |
529 |
439 440
|
subcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. CC ) |
530 |
|
elex |
|- ( ( x - T ) e. CC -> ( x - T ) e. _V ) |
531 |
529 530
|
syl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. _V ) |
532 |
531
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. _V ) |
533 |
|
simp-4l |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ph ) |
534 |
156
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> A e. RR* ) |
535 |
158
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> B e. RR* ) |
536 |
160
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( A [,] B ) ) |
537 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
538 |
534 535 536 537
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
539 |
538
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( A [,] B ) ) |
540 |
539 477
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
541 |
540
|
ad2antrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( x - T ) e. ( A [,] B ) ) |
542 |
533 541
|
jca |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) |
543 |
|
eleq1 |
|- ( y = ( x - T ) -> ( y e. ( A [,] B ) <-> ( x - T ) e. ( A [,] B ) ) ) |
544 |
543
|
anbi2d |
|- ( y = ( x - T ) -> ( ( ph /\ y e. ( A [,] B ) ) <-> ( ph /\ ( x - T ) e. ( A [,] B ) ) ) ) |
545 |
|
oveq1 |
|- ( y = ( x - T ) -> ( y + T ) = ( ( x - T ) + T ) ) |
546 |
545
|
fveq2d |
|- ( y = ( x - T ) -> ( F ` ( y + T ) ) = ( F ` ( ( x - T ) + T ) ) ) |
547 |
|
fveq2 |
|- ( y = ( x - T ) -> ( F ` y ) = ( F ` ( x - T ) ) ) |
548 |
546 547
|
eqeq12d |
|- ( y = ( x - T ) -> ( ( F ` ( y + T ) ) = ( F ` y ) <-> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
549 |
544 548
|
imbi12d |
|- ( y = ( x - T ) -> ( ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) <-> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) ) |
550 |
|
eleq1 |
|- ( x = y -> ( x e. ( A [,] B ) <-> y e. ( A [,] B ) ) ) |
551 |
550
|
anbi2d |
|- ( x = y -> ( ( ph /\ x e. ( A [,] B ) ) <-> ( ph /\ y e. ( A [,] B ) ) ) ) |
552 |
|
oveq1 |
|- ( x = y -> ( x + T ) = ( y + T ) ) |
553 |
552
|
fveq2d |
|- ( x = y -> ( F ` ( x + T ) ) = ( F ` ( y + T ) ) ) |
554 |
|
fveq2 |
|- ( x = y -> ( F ` x ) = ( F ` y ) ) |
555 |
553 554
|
eqeq12d |
|- ( x = y -> ( ( F ` ( x + T ) ) = ( F ` x ) <-> ( F ` ( y + T ) ) = ( F ` y ) ) ) |
556 |
551 555
|
imbi12d |
|- ( x = y -> ( ( ( ph /\ x e. ( A [,] B ) ) -> ( F ` ( x + T ) ) = ( F ` x ) ) <-> ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) ) ) |
557 |
556 7
|
chvarvv |
|- ( ( ph /\ y e. ( A [,] B ) ) -> ( F ` ( y + T ) ) = ( F ` y ) ) |
558 |
549 557
|
vtoclg |
|- ( ( x - T ) e. _V -> ( ( ph /\ ( x - T ) e. ( A [,] B ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) ) |
559 |
532 542 558
|
sylc |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F ` ( ( x - T ) + T ) ) = ( F ` ( x - T ) ) ) |
560 |
525 528 559
|
3eqtrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` ( x - T ) ) ) |
561 |
507 560
|
eqtr4d |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( G ` ( x - T ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
562 |
430 561
|
eqtr4d |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
563 |
428 562
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( G ` ( x - T ) ) ) |
564 |
395 563
|
eqtrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
565 |
393 564
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = ( G ` ( x - T ) ) ) |
566 |
310 390
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
567 |
566
|
adantlr |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
568 |
426 420
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
569 |
568
|
ad4ant14 |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
570 |
265 267
|
fssresd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) : ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) --> CC ) |
571 |
570
|
ad3antrrr |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) : ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) --> CC ) |
572 |
571 523
|
ffvelrnd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) e. CC ) |
573 |
430 572
|
eqeltrd |
|- ( ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) /\ -. x = ( S ` ( i + 1 ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
574 |
569 573
|
pm2.61dan |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) e. CC ) |
575 |
395 574
|
eqeltrd |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) /\ -. x = ( S ` i ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
576 |
567 575
|
pm2.61dan |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
577 |
|
eqid |
|- ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
578 |
577
|
fvmpt2 |
|- ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) /\ if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
579 |
303 576 578
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
580 |
|
nfv |
|- F/ x ( ph /\ i e. ( 0 ..^ M ) ) |
581 |
|
eqid |
|- ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) = ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
582 |
580 581 50 53 10 12 11
|
cncfiooicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( x e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |-> if ( x = ( Q ` i ) , R , if ( x = ( Q ` ( i + 1 ) ) , L , ( ( F |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ` x ) ) ) ) e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
583 |
365 582
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
584 |
|
cncff |
|- ( G e. ( ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) -cn-> CC ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
585 |
583 584
|
syl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
586 |
585
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
587 |
586 477
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( G ` ( x - T ) ) e. CC ) |
588 |
14
|
fvmpt2 |
|- ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) /\ ( G ` ( x - T ) ) e. CC ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
589 |
303 587 588
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
590 |
565 579 589
|
3eqtr4rd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( H ` x ) = ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) ) |
591 |
590
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x ) |
592 |
|
ioossicc |
|- ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) C_ ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |
593 |
592
|
sseli |
|- ( x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
594 |
593
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
595 |
593 576
|
sylan2 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) e. CC ) |
596 |
594 595 578
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) |
597 |
231 239
|
gtned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x =/= ( S ` i ) ) |
598 |
597
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> -. x = ( S ` i ) ) |
599 |
598
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) = if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) |
600 |
232 243
|
ltned |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> x =/= ( S ` ( i + 1 ) ) ) |
601 |
600
|
neneqd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> -. x = ( S ` ( i + 1 ) ) ) |
602 |
601
|
iffalsed |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) |
603 |
524
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) = ( F ` x ) ) |
604 |
602 603
|
eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) = ( F ` x ) ) |
605 |
596 599 604
|
3eqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) = ( F ` x ) ) |
606 |
605
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
607 |
579 576
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) -> ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) e. CC ) |
608 |
123 124 607
|
itgioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x ) |
609 |
123 124 306
|
itgioo |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
610 |
606 608 609
|
3eqtr3d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( ( x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) |-> if ( x = ( S ` i ) , R , if ( x = ( S ` ( i + 1 ) ) , L , ( ( F |` ( ( S ` i ) (,) ( S ` ( i + 1 ) ) ) ) ` x ) ) ) ) ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
611 |
591 610
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x ) |
612 |
102 112
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) = ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) |
613 |
612
|
itgeq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( H ` x ) _d x ) |
614 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) |
615 |
612
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
616 |
615
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) = ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
617 |
614 616
|
eleqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ) |
618 |
585
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> G : ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) --> CC ) |
619 |
50
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) e. RR ) |
620 |
53
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
621 |
100
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR ) |
622 |
111
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR ) |
623 |
|
eliccre |
|- ( ( ( ( Q ` i ) + T ) e. RR /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
624 |
621 622 614 623
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x e. RR ) |
625 |
78
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> T e. RR ) |
626 |
624 625
|
resubcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. RR ) |
627 |
228
|
eqcomd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
628 |
627
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) = ( ( ( Q ` i ) + T ) - T ) ) |
629 |
621
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) e. RR* ) |
630 |
622
|
rexrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` ( i + 1 ) ) + T ) e. RR* ) |
631 |
|
iccgelb |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) <_ x ) |
632 |
629 630 614 631
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( Q ` i ) + T ) <_ x ) |
633 |
621 624 625 632
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` i ) + T ) - T ) <_ ( x - T ) ) |
634 |
628 633
|
eqbrtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( Q ` i ) <_ ( x - T ) ) |
635 |
|
iccleub |
|- ( ( ( ( Q ` i ) + T ) e. RR* /\ ( ( Q ` ( i + 1 ) ) + T ) e. RR* /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x <_ ( ( Q ` ( i + 1 ) ) + T ) ) |
636 |
629 630 614 635
|
syl3anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> x <_ ( ( Q ` ( i + 1 ) ) + T ) ) |
637 |
624 622 625 636
|
lesub1dd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ ( ( ( Q ` ( i + 1 ) ) + T ) - T ) ) |
638 |
247
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( ( Q ` ( i + 1 ) ) + T ) - T ) = ( Q ` ( i + 1 ) ) ) |
639 |
637 638
|
breqtrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) <_ ( Q ` ( i + 1 ) ) ) |
640 |
619 620 626 634 639
|
eliccd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( x - T ) e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
641 |
618 640
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( G ` ( x - T ) ) e. CC ) |
642 |
617 641 588
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( H ` x ) = ( G ` ( x - T ) ) ) |
643 |
|
eqidd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) = ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ) |
644 |
|
oveq1 |
|- ( y = x -> ( y - T ) = ( x - T ) ) |
645 |
644
|
fveq2d |
|- ( y = x -> ( G ` ( y - T ) ) = ( G ` ( x - T ) ) ) |
646 |
645
|
adantl |
|- ( ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) /\ y = x ) -> ( G ` ( y - T ) ) = ( G ` ( x - T ) ) ) |
647 |
643 646 614 641
|
fvmptd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) = ( G ` ( x - T ) ) ) |
648 |
642 647
|
eqtr4d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ) -> ( H ` x ) = ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) ) |
649 |
648
|
itgeq2dv |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( H ` x ) _d x = S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) _d x ) |
650 |
5
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> T e. RR+ ) |
651 |
645
|
cbvmptv |
|- ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) = ( x e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( x - T ) ) ) |
652 |
50 53 382 583 650 651
|
itgiccshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) ( ( y e. ( ( ( Q ` i ) + T ) [,] ( ( Q ` ( i + 1 ) ) + T ) ) |-> ( G ` ( y - T ) ) ) ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x ) |
653 |
613 649 652
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( H ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x ) |
654 |
135
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> dom F = RR ) |
655 |
64 654
|
sseqtrrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ dom F ) |
656 |
50 53 138 10 655 11 12 13
|
itgioocnicc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G e. L^1 /\ S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) ) |
657 |
656
|
simprd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( G ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
658 |
611 653 657
|
3eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
659 |
658
|
sumeq2dv |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( S ` i ) [,] ( S ` ( i + 1 ) ) ) ( F ` x ) _d x = sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x ) |
660 |
93 308 659
|
3eqtrrd |
|- ( ph -> sum_ i e. ( 0 ..^ M ) S. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ( F ` x ) _d x = S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x ) |
661 |
25 68 660
|
3eqtrrd |
|- ( ph -> S. ( ( A + T ) [,] ( B + T ) ) ( F ` x ) _d x = S. ( A [,] B ) ( F ` x ) _d x ) |