Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem82.1 |
|- G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) |
2 |
|
fourierdlem82.2 |
|- ( ph -> A e. RR ) |
3 |
|
fourierdlem82.3 |
|- ( ph -> B e. RR ) |
4 |
|
fourierdlem82.4 |
|- ( ph -> A < B ) |
5 |
|
fourierdlem82.5 |
|- ( ph -> F : ( A [,] B ) --> CC ) |
6 |
|
fourierdlem82.6 |
|- ( ph -> ( F |` ( A (,) B ) ) e. ( ( A (,) B ) -cn-> CC ) ) |
7 |
|
fourierdlem82.7 |
|- ( ph -> L e. ( F limCC B ) ) |
8 |
|
fourierdlem82.8 |
|- ( ph -> R e. ( F limCC A ) ) |
9 |
|
fourierdlem82.9 |
|- ( ph -> X e. RR ) |
10 |
2 3 4
|
ltled |
|- ( ph -> A <_ B ) |
11 |
2 3 9 10
|
lesub1dd |
|- ( ph -> ( A - X ) <_ ( B - X ) ) |
12 |
11
|
ditgpos |
|- ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( G ` ( X + t ) ) _d t = S. ( ( A - X ) (,) ( B - X ) ) ( G ` ( X + t ) ) _d t ) |
13 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = R ) |
14 |
13
|
adantl |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = R ) |
15 |
|
iftrue |
|- ( x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
16 |
15
|
adantl |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = R ) |
17 |
14 16
|
eqtr4d |
|- ( ( ph /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
18 |
17
|
adantlr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ x = A ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
19 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
20 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = L ) |
21 |
19 20
|
sylan9eq |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = L ) |
22 |
21
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = L ) |
23 |
|
iffalse |
|- ( -. x = A -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
24 |
|
iftrue |
|- ( x = B -> if ( x = B , L , ( F ` x ) ) = L ) |
25 |
23 24
|
sylan9eq |
|- ( ( -. x = A /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
26 |
25
|
adantll |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = L ) |
27 |
22 26
|
eqtr4d |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
28 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
29 |
28
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
30 |
19
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
31 |
|
iffalse |
|- ( -. x = B -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
32 |
31
|
adantl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = B , L , ( F ` x ) ) = ( F ` x ) ) |
33 |
23
|
ad2antlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( x = B , L , ( F ` x ) ) ) |
34 |
2
|
rexrd |
|- ( ph -> A e. RR* ) |
35 |
34
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A e. RR* ) |
36 |
3
|
rexrd |
|- ( ph -> B e. RR* ) |
37 |
36
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> B e. RR* ) |
38 |
2
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A e. RR ) |
39 |
3
|
adantr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> B e. RR ) |
40 |
|
simpr |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. ( A [,] B ) ) |
41 |
|
eliccre |
|- ( ( A e. RR /\ B e. RR /\ x e. ( A [,] B ) ) -> x e. RR ) |
42 |
38 39 40 41
|
syl3anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x e. RR ) |
43 |
42
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. RR ) |
44 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A e. RR ) |
45 |
42
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x e. RR ) |
46 |
|
elicc2 |
|- ( ( A e. RR /\ B e. RR ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
47 |
38 39 46
|
syl2anc |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. ( A [,] B ) <-> ( x e. RR /\ A <_ x /\ x <_ B ) ) ) |
48 |
40 47
|
mpbid |
|- ( ( ph /\ x e. ( A [,] B ) ) -> ( x e. RR /\ A <_ x /\ x <_ B ) ) |
49 |
48
|
simp2d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> A <_ x ) |
50 |
49
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A <_ x ) |
51 |
|
neqne |
|- ( -. x = A -> x =/= A ) |
52 |
51
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> x =/= A ) |
53 |
44 45 50 52
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> A < x ) |
54 |
53
|
adantr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> A < x ) |
55 |
42
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x e. RR ) |
56 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B e. RR ) |
57 |
48
|
simp3d |
|- ( ( ph /\ x e. ( A [,] B ) ) -> x <_ B ) |
58 |
57
|
adantr |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x <_ B ) |
59 |
|
nesym |
|- ( B =/= x <-> -. x = B ) |
60 |
59
|
biimpri |
|- ( -. x = B -> B =/= x ) |
61 |
60
|
adantl |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> B =/= x ) |
62 |
55 56 58 61
|
leneltd |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = B ) -> x < B ) |
63 |
62
|
adantlr |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x < B ) |
64 |
35 37 43 54 63
|
eliood |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> x e. ( A (,) B ) ) |
65 |
|
fvres |
|- ( x e. ( A (,) B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
66 |
64 65
|
syl |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
67 |
32 33 66
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
68 |
29 30 67
|
3eqtr4d |
|- ( ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) /\ -. x = B ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
69 |
27 68
|
pm2.61dan |
|- ( ( ( ph /\ x e. ( A [,] B ) ) /\ -. x = A ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
70 |
18 69
|
pm2.61dan |
|- ( ( ph /\ x e. ( A [,] B ) ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) |
71 |
70
|
mpteq2dva |
|- ( ph -> ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
72 |
1 71
|
syl5eq |
|- ( ph -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
73 |
72
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) ) ) |
74 |
|
eqeq1 |
|- ( x = ( X + t ) -> ( x = A <-> ( X + t ) = A ) ) |
75 |
|
eqeq1 |
|- ( x = ( X + t ) -> ( x = B <-> ( X + t ) = B ) ) |
76 |
|
fveq2 |
|- ( x = ( X + t ) -> ( F ` x ) = ( F ` ( X + t ) ) ) |
77 |
75 76
|
ifbieq2d |
|- ( x = ( X + t ) -> if ( x = B , L , ( F ` x ) ) = if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) ) |
78 |
74 77
|
ifbieq2d |
|- ( x = ( X + t ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = if ( ( X + t ) = A , R , if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) ) ) |
79 |
2
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> A e. RR ) |
80 |
|
simpr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> t e. ( ( A - X ) (,) ( B - X ) ) ) |
81 |
2 9
|
resubcld |
|- ( ph -> ( A - X ) e. RR ) |
82 |
81
|
rexrd |
|- ( ph -> ( A - X ) e. RR* ) |
83 |
82
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( A - X ) e. RR* ) |
84 |
3 9
|
resubcld |
|- ( ph -> ( B - X ) e. RR ) |
85 |
84
|
rexrd |
|- ( ph -> ( B - X ) e. RR* ) |
86 |
85
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( B - X ) e. RR* ) |
87 |
|
elioo2 |
|- ( ( ( A - X ) e. RR* /\ ( B - X ) e. RR* ) -> ( t e. ( ( A - X ) (,) ( B - X ) ) <-> ( t e. RR /\ ( A - X ) < t /\ t < ( B - X ) ) ) ) |
88 |
83 86 87
|
syl2anc |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( t e. ( ( A - X ) (,) ( B - X ) ) <-> ( t e. RR /\ ( A - X ) < t /\ t < ( B - X ) ) ) ) |
89 |
80 88
|
mpbid |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( t e. RR /\ ( A - X ) < t /\ t < ( B - X ) ) ) |
90 |
89
|
simp2d |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( A - X ) < t ) |
91 |
9
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> X e. RR ) |
92 |
89
|
simp1d |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> t e. RR ) |
93 |
79 91 92
|
ltsubadd2d |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( ( A - X ) < t <-> A < ( X + t ) ) ) |
94 |
90 93
|
mpbid |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> A < ( X + t ) ) |
95 |
79 94
|
gtned |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) =/= A ) |
96 |
95
|
neneqd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> -. ( X + t ) = A ) |
97 |
96
|
iffalsed |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> if ( ( X + t ) = A , R , if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) ) = if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) ) |
98 |
91 92
|
readdcld |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) e. RR ) |
99 |
89
|
simp3d |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> t < ( B - X ) ) |
100 |
3
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> B e. RR ) |
101 |
91 92 100
|
ltaddsub2d |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( ( X + t ) < B <-> t < ( B - X ) ) ) |
102 |
99 101
|
mpbird |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) < B ) |
103 |
98 102
|
ltned |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) =/= B ) |
104 |
103
|
neneqd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> -. ( X + t ) = B ) |
105 |
104
|
iffalsed |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) = ( F ` ( X + t ) ) ) |
106 |
97 105
|
eqtrd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> if ( ( X + t ) = A , R , if ( ( X + t ) = B , L , ( F ` ( X + t ) ) ) ) = ( F ` ( X + t ) ) ) |
107 |
78 106
|
sylan9eqr |
|- ( ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) /\ x = ( X + t ) ) -> if ( x = A , R , if ( x = B , L , ( F ` x ) ) ) = ( F ` ( X + t ) ) ) |
108 |
79 98 94
|
ltled |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> A <_ ( X + t ) ) |
109 |
98 100 102
|
ltled |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) <_ B ) |
110 |
79 100 98 108 109
|
eliccd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) e. ( A [,] B ) ) |
111 |
5
|
ffund |
|- ( ph -> Fun F ) |
112 |
111
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> Fun F ) |
113 |
5
|
fdmd |
|- ( ph -> dom F = ( A [,] B ) ) |
114 |
113
|
eqcomd |
|- ( ph -> ( A [,] B ) = dom F ) |
115 |
114
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( A [,] B ) = dom F ) |
116 |
110 115
|
eleqtrd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( X + t ) e. dom F ) |
117 |
|
fvelrn |
|- ( ( Fun F /\ ( X + t ) e. dom F ) -> ( F ` ( X + t ) ) e. ran F ) |
118 |
112 116 117
|
syl2anc |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( F ` ( X + t ) ) e. ran F ) |
119 |
73 107 110 118
|
fvmptd |
|- ( ( ph /\ t e. ( ( A - X ) (,) ( B - X ) ) ) -> ( G ` ( X + t ) ) = ( F ` ( X + t ) ) ) |
120 |
119
|
itgeq2dv |
|- ( ph -> S. ( ( A - X ) (,) ( B - X ) ) ( G ` ( X + t ) ) _d t = S. ( ( A - X ) (,) ( B - X ) ) ( F ` ( X + t ) ) _d t ) |
121 |
5
|
frnd |
|- ( ph -> ran F C_ CC ) |
122 |
121
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ran F C_ CC ) |
123 |
111
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> Fun F ) |
124 |
2
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> A e. RR ) |
125 |
3
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> B e. RR ) |
126 |
9
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> X e. RR ) |
127 |
81
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) e. RR ) |
128 |
84
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( B - X ) e. RR ) |
129 |
|
simpr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> t e. ( ( A - X ) [,] ( B - X ) ) ) |
130 |
|
eliccre |
|- ( ( ( A - X ) e. RR /\ ( B - X ) e. RR /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> t e. RR ) |
131 |
127 128 129 130
|
syl3anc |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> t e. RR ) |
132 |
126 131
|
readdcld |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + t ) e. RR ) |
133 |
|
elicc2 |
|- ( ( ( A - X ) e. RR /\ ( B - X ) e. RR ) -> ( t e. ( ( A - X ) [,] ( B - X ) ) <-> ( t e. RR /\ ( A - X ) <_ t /\ t <_ ( B - X ) ) ) ) |
134 |
127 128 133
|
syl2anc |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( t e. ( ( A - X ) [,] ( B - X ) ) <-> ( t e. RR /\ ( A - X ) <_ t /\ t <_ ( B - X ) ) ) ) |
135 |
129 134
|
mpbid |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( t e. RR /\ ( A - X ) <_ t /\ t <_ ( B - X ) ) ) |
136 |
135
|
simp2d |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A - X ) <_ t ) |
137 |
124 126 131
|
lesubadd2d |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( A - X ) <_ t <-> A <_ ( X + t ) ) ) |
138 |
136 137
|
mpbid |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> A <_ ( X + t ) ) |
139 |
135
|
simp3d |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> t <_ ( B - X ) ) |
140 |
126 131 125
|
leaddsub2d |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( ( X + t ) <_ B <-> t <_ ( B - X ) ) ) |
141 |
139 140
|
mpbird |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + t ) <_ B ) |
142 |
124 125 132 138 141
|
eliccd |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + t ) e. ( A [,] B ) ) |
143 |
114
|
adantr |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( A [,] B ) = dom F ) |
144 |
142 143
|
eleqtrd |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( X + t ) e. dom F ) |
145 |
123 144 117
|
syl2anc |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` ( X + t ) ) e. ran F ) |
146 |
122 145
|
sseldd |
|- ( ( ph /\ t e. ( ( A - X ) [,] ( B - X ) ) ) -> ( F ` ( X + t ) ) e. CC ) |
147 |
81 84 146
|
itgioo |
|- ( ph -> S. ( ( A - X ) (,) ( B - X ) ) ( F ` ( X + t ) ) _d t = S. ( ( A - X ) [,] ( B - X ) ) ( F ` ( X + t ) ) _d t ) |
148 |
12 120 147
|
3eqtrrd |
|- ( ph -> S. ( ( A - X ) [,] ( B - X ) ) ( F ` ( X + t ) ) _d t = S_ [ ( A - X ) -> ( B - X ) ] ( G ` ( X + t ) ) _d t ) |
149 |
|
nfv |
|- F/ x ph |
150 |
2 3 4 5
|
limcicciooub |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC B ) = ( F limCC B ) ) |
151 |
7 150
|
eleqtrrd |
|- ( ph -> L e. ( ( F |` ( A (,) B ) ) limCC B ) ) |
152 |
2 3 4 5
|
limciccioolb |
|- ( ph -> ( ( F |` ( A (,) B ) ) limCC A ) = ( F limCC A ) ) |
153 |
8 152
|
eleqtrrd |
|- ( ph -> R e. ( ( F |` ( A (,) B ) ) limCC A ) ) |
154 |
149 1 2 3 6 151 153
|
cncfiooicc |
|- ( ph -> G e. ( ( A [,] B ) -cn-> CC ) ) |
155 |
2 3 10 9 154
|
itgsbtaddcnst |
|- ( ph -> S_ [ ( A - X ) -> ( B - X ) ] ( G ` ( X + t ) ) _d t = S_ [ A -> B ] ( G ` s ) _d s ) |
156 |
10
|
ditgpos |
|- ( ph -> S_ [ A -> B ] ( G ` s ) _d s = S. ( A (,) B ) ( G ` s ) _d s ) |
157 |
|
fveq2 |
|- ( s = t -> ( G ` s ) = ( G ` t ) ) |
158 |
157
|
cbvitgv |
|- S. ( A (,) B ) ( G ` s ) _d s = S. ( A (,) B ) ( G ` t ) _d t |
159 |
1
|
a1i |
|- ( ( ph /\ t e. ( A (,) B ) ) -> G = ( x e. ( A [,] B ) |-> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) ) ) |
160 |
2
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> A e. RR ) |
161 |
|
simplr |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> t e. ( A (,) B ) ) |
162 |
34
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> A e. RR* ) |
163 |
36
|
ad2antrr |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> B e. RR* ) |
164 |
|
elioo2 |
|- ( ( A e. RR* /\ B e. RR* ) -> ( t e. ( A (,) B ) <-> ( t e. RR /\ A < t /\ t < B ) ) ) |
165 |
162 163 164
|
syl2anc |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> ( t e. ( A (,) B ) <-> ( t e. RR /\ A < t /\ t < B ) ) ) |
166 |
161 165
|
mpbid |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> ( t e. RR /\ A < t /\ t < B ) ) |
167 |
166
|
simp2d |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> A < t ) |
168 |
|
simpr |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x = t ) |
169 |
167 168
|
breqtrrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> A < x ) |
170 |
160 169
|
gtned |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x =/= A ) |
171 |
170
|
neneqd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> -. x = A ) |
172 |
171
|
iffalsed |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) |
173 |
166
|
simp1d |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> t e. RR ) |
174 |
168 173
|
eqeltrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x e. RR ) |
175 |
166
|
simp3d |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> t < B ) |
176 |
168 175
|
eqbrtrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x < B ) |
177 |
174 176
|
ltned |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x =/= B ) |
178 |
177
|
neneqd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> -. x = B ) |
179 |
178
|
iffalsed |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) = ( ( F |` ( A (,) B ) ) ` x ) ) |
180 |
168 161
|
eqeltrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> x e. ( A (,) B ) ) |
181 |
180 65
|
syl |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` x ) ) |
182 |
|
fveq2 |
|- ( x = t -> ( F ` x ) = ( F ` t ) ) |
183 |
182
|
adantl |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> ( F ` x ) = ( F ` t ) ) |
184 |
181 183
|
eqtrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> ( ( F |` ( A (,) B ) ) ` x ) = ( F ` t ) ) |
185 |
172 179 184
|
3eqtrd |
|- ( ( ( ph /\ t e. ( A (,) B ) ) /\ x = t ) -> if ( x = A , R , if ( x = B , L , ( ( F |` ( A (,) B ) ) ` x ) ) ) = ( F ` t ) ) |
186 |
|
ioossicc |
|- ( A (,) B ) C_ ( A [,] B ) |
187 |
|
simpr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. ( A (,) B ) ) |
188 |
186 187
|
sselid |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. ( A [,] B ) ) |
189 |
111
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> Fun F ) |
190 |
114
|
adantr |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( A [,] B ) = dom F ) |
191 |
188 190
|
eleqtrd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> t e. dom F ) |
192 |
|
fvelrn |
|- ( ( Fun F /\ t e. dom F ) -> ( F ` t ) e. ran F ) |
193 |
189 191 192
|
syl2anc |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( F ` t ) e. ran F ) |
194 |
159 185 188 193
|
fvmptd |
|- ( ( ph /\ t e. ( A (,) B ) ) -> ( G ` t ) = ( F ` t ) ) |
195 |
194
|
itgeq2dv |
|- ( ph -> S. ( A (,) B ) ( G ` t ) _d t = S. ( A (,) B ) ( F ` t ) _d t ) |
196 |
158 195
|
syl5eq |
|- ( ph -> S. ( A (,) B ) ( G ` s ) _d s = S. ( A (,) B ) ( F ` t ) _d t ) |
197 |
5
|
ffvelrnda |
|- ( ( ph /\ t e. ( A [,] B ) ) -> ( F ` t ) e. CC ) |
198 |
2 3 197
|
itgioo |
|- ( ph -> S. ( A (,) B ) ( F ` t ) _d t = S. ( A [,] B ) ( F ` t ) _d t ) |
199 |
156 196 198
|
3eqtrd |
|- ( ph -> S_ [ A -> B ] ( G ` s ) _d s = S. ( A [,] B ) ( F ` t ) _d t ) |
200 |
148 155 199
|
3eqtrrd |
|- ( ph -> S. ( A [,] B ) ( F ` t ) _d t = S. ( ( A - X ) [,] ( B - X ) ) ( F ` ( X + t ) ) _d t ) |