Step |
Hyp |
Ref |
Expression |
1 |
|
fourierdlem88.1 |
|- P = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = ( -u _pi + X ) /\ ( p ` m ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
2 |
|
fourierdlem88.f |
|- ( ph -> F : RR --> RR ) |
3 |
|
fourierdlem88.x |
|- ( ph -> X e. ran V ) |
4 |
|
fourierdlem88.y |
|- ( ph -> Y e. ( ( F |` ( X (,) +oo ) ) limCC X ) ) |
5 |
|
fourierdlem88.w |
|- ( ph -> W e. ( ( F |` ( -oo (,) X ) ) limCC X ) ) |
6 |
|
fourierdlem88.h |
|- H = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 0 , ( ( ( F ` ( X + s ) ) - if ( 0 < s , Y , W ) ) / s ) ) ) |
7 |
|
fourierdlem88.k |
|- K = ( s e. ( -u _pi [,] _pi ) |-> if ( s = 0 , 1 , ( s / ( 2 x. ( sin ` ( s / 2 ) ) ) ) ) ) |
8 |
|
fourierdlem88.u |
|- U = ( s e. ( -u _pi [,] _pi ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
9 |
|
fourierdlem88.n |
|- ( ph -> N e. RR ) |
10 |
|
fourierdlem88.s |
|- S = ( s e. ( -u _pi [,] _pi ) |-> ( sin ` ( ( N + ( 1 / 2 ) ) x. s ) ) ) |
11 |
|
fourierdlem88.g |
|- G = ( s e. ( -u _pi [,] _pi ) |-> ( ( U ` s ) x. ( S ` s ) ) ) |
12 |
|
fourierdlem88.m |
|- ( ph -> M e. NN ) |
13 |
|
fourierdlem88.v |
|- ( ph -> V e. ( P ` M ) ) |
14 |
|
fourierdlem88.fcn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) e. ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
15 |
|
fourierdlem88.r |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> R e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` i ) ) ) |
16 |
|
fourierdlem88.l |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> L e. ( ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) limCC ( V ` ( i + 1 ) ) ) ) |
17 |
|
fourierdlem88.q |
|- Q = ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) |
18 |
|
fourierdlem88.o |
|- O = ( m e. NN |-> { p e. ( RR ^m ( 0 ... m ) ) | ( ( ( p ` 0 ) = -u _pi /\ ( p ` m ) = _pi ) /\ A. i e. ( 0 ..^ m ) ( p ` i ) < ( p ` ( i + 1 ) ) ) } ) |
19 |
|
fourierdlem88.i |
|- I = ( RR _D F ) |
20 |
|
fourierdlem88.ifn |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> RR ) |
21 |
|
fourierdlem88.c |
|- ( ph -> C e. ( ( I |` ( -oo (,) X ) ) limCC X ) ) |
22 |
|
fourierdlem88.d |
|- ( ph -> D e. ( ( I |` ( X (,) +oo ) ) limCC X ) ) |
23 |
|
pire |
|- _pi e. RR |
24 |
23
|
a1i |
|- ( ph -> _pi e. RR ) |
25 |
24
|
renegcld |
|- ( ph -> -u _pi e. RR ) |
26 |
1
|
fourierdlem2 |
|- ( M e. NN -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
27 |
12 26
|
syl |
|- ( ph -> ( V e. ( P ` M ) <-> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) ) |
28 |
13 27
|
mpbid |
|- ( ph -> ( V e. ( RR ^m ( 0 ... M ) ) /\ ( ( ( V ` 0 ) = ( -u _pi + X ) /\ ( V ` M ) = ( _pi + X ) ) /\ A. i e. ( 0 ..^ M ) ( V ` i ) < ( V ` ( i + 1 ) ) ) ) ) |
29 |
28
|
simpld |
|- ( ph -> V e. ( RR ^m ( 0 ... M ) ) ) |
30 |
|
elmapi |
|- ( V e. ( RR ^m ( 0 ... M ) ) -> V : ( 0 ... M ) --> RR ) |
31 |
|
frn |
|- ( V : ( 0 ... M ) --> RR -> ran V C_ RR ) |
32 |
29 30 31
|
3syl |
|- ( ph -> ran V C_ RR ) |
33 |
32 3
|
sseldd |
|- ( ph -> X e. RR ) |
34 |
25 24 33 1 18 12 13 17
|
fourierdlem14 |
|- ( ph -> Q e. ( O ` M ) ) |
35 |
|
ioossre |
|- ( X (,) +oo ) C_ RR |
36 |
35
|
a1i |
|- ( ph -> ( X (,) +oo ) C_ RR ) |
37 |
2 36
|
fssresd |
|- ( ph -> ( F |` ( X (,) +oo ) ) : ( X (,) +oo ) --> RR ) |
38 |
|
ax-resscn |
|- RR C_ CC |
39 |
36 38
|
sstrdi |
|- ( ph -> ( X (,) +oo ) C_ CC ) |
40 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
41 |
|
pnfxr |
|- +oo e. RR* |
42 |
41
|
a1i |
|- ( ph -> +oo e. RR* ) |
43 |
33
|
ltpnfd |
|- ( ph -> X < +oo ) |
44 |
40 42 33 43
|
lptioo1cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( X (,) +oo ) ) ) |
45 |
37 39 44 4
|
limcrecl |
|- ( ph -> Y e. RR ) |
46 |
|
ioossre |
|- ( -oo (,) X ) C_ RR |
47 |
46
|
a1i |
|- ( ph -> ( -oo (,) X ) C_ RR ) |
48 |
2 47
|
fssresd |
|- ( ph -> ( F |` ( -oo (,) X ) ) : ( -oo (,) X ) --> RR ) |
49 |
47 38
|
sstrdi |
|- ( ph -> ( -oo (,) X ) C_ CC ) |
50 |
|
mnfxr |
|- -oo e. RR* |
51 |
50
|
a1i |
|- ( ph -> -oo e. RR* ) |
52 |
33
|
mnfltd |
|- ( ph -> -oo < X ) |
53 |
40 51 33 52
|
lptioo2cn |
|- ( ph -> X e. ( ( limPt ` ( TopOpen ` CCfld ) ) ` ( -oo (,) X ) ) ) |
54 |
48 49 53 5
|
limcrecl |
|- ( ph -> W e. RR ) |
55 |
2 33 45 54 6 7 8
|
fourierdlem55 |
|- ( ph -> U : ( -u _pi [,] _pi ) --> RR ) |
56 |
55
|
ffvelrnda |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( U ` s ) e. RR ) |
57 |
10
|
fourierdlem5 |
|- ( N e. RR -> S : ( -u _pi [,] _pi ) --> RR ) |
58 |
9 57
|
syl |
|- ( ph -> S : ( -u _pi [,] _pi ) --> RR ) |
59 |
58
|
ffvelrnda |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( S ` s ) e. RR ) |
60 |
56 59
|
remulcld |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( ( U ` s ) x. ( S ` s ) ) e. RR ) |
61 |
60
|
recnd |
|- ( ( ph /\ s e. ( -u _pi [,] _pi ) ) -> ( ( U ` s ) x. ( S ` s ) ) e. CC ) |
62 |
61 11
|
fmptd |
|- ( ph -> G : ( -u _pi [,] _pi ) --> CC ) |
63 |
|
ssid |
|- CC C_ CC |
64 |
|
cncfss |
|- ( ( RR C_ CC /\ CC C_ CC ) -> ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> RR ) C_ ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
65 |
38 63 64
|
mp2an |
|- ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> RR ) C_ ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) |
66 |
2
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> F : RR --> RR ) |
67 |
18 12 34
|
fourierdlem15 |
|- ( ph -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
69 |
|
elfzofz |
|- ( i e. ( 0 ..^ M ) -> i e. ( 0 ... M ) ) |
70 |
69
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ... M ) ) |
71 |
68 70
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. ( -u _pi [,] _pi ) ) |
72 |
|
fzofzp1 |
|- ( i e. ( 0 ..^ M ) -> ( i + 1 ) e. ( 0 ... M ) ) |
73 |
72
|
adantl |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( i + 1 ) e. ( 0 ... M ) ) |
74 |
68 73
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. ( -u _pi [,] _pi ) ) |
75 |
33
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. RR ) |
76 |
1 12 13 3
|
fourierdlem12 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
77 |
75
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> X e. CC ) |
78 |
77
|
addid2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( 0 + X ) = X ) |
79 |
23
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR ) |
80 |
79
|
renegcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR ) |
81 |
80 75
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( -u _pi + X ) e. RR ) |
82 |
79 75
|
readdcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( _pi + X ) e. RR ) |
83 |
81 82
|
iccssred |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( -u _pi + X ) [,] ( _pi + X ) ) C_ RR ) |
84 |
1 12 13
|
fourierdlem15 |
|- ( ph -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
85 |
84
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> V : ( 0 ... M ) --> ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
86 |
85 70
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
87 |
83 86
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. RR ) |
88 |
87 75
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` i ) - X ) e. RR ) |
89 |
17
|
fvmpt2 |
|- ( ( i e. ( 0 ... M ) /\ ( ( V ` i ) - X ) e. RR ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
90 |
70 88 89
|
syl2anc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) = ( ( V ` i ) - X ) ) |
91 |
90
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + X ) = ( ( ( V ` i ) - X ) + X ) ) |
92 |
87
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` i ) e. CC ) |
93 |
92 77
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( V ` i ) - X ) + X ) = ( V ` i ) ) |
94 |
91 93
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) + X ) = ( V ` i ) ) |
95 |
|
fveq2 |
|- ( i = j -> ( V ` i ) = ( V ` j ) ) |
96 |
95
|
oveq1d |
|- ( i = j -> ( ( V ` i ) - X ) = ( ( V ` j ) - X ) ) |
97 |
96
|
cbvmptv |
|- ( i e. ( 0 ... M ) |-> ( ( V ` i ) - X ) ) = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
98 |
17 97
|
eqtri |
|- Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) |
99 |
98
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Q = ( j e. ( 0 ... M ) |-> ( ( V ` j ) - X ) ) ) |
100 |
|
simpr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> j = ( i + 1 ) ) |
101 |
100
|
fveq2d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( V ` j ) = ( V ` ( i + 1 ) ) ) |
102 |
101
|
oveq1d |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ j = ( i + 1 ) ) -> ( ( V ` j ) - X ) = ( ( V ` ( i + 1 ) ) - X ) ) |
103 |
85 73
|
ffvelrnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. ( ( -u _pi + X ) [,] ( _pi + X ) ) ) |
104 |
83 103
|
sseldd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. RR ) |
105 |
104 75
|
resubcld |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( V ` ( i + 1 ) ) - X ) e. RR ) |
106 |
99 102 73 105
|
fvmptd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) = ( ( V ` ( i + 1 ) ) - X ) ) |
107 |
106
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + X ) = ( ( ( V ` ( i + 1 ) ) - X ) + X ) ) |
108 |
104
|
recnd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( V ` ( i + 1 ) ) e. CC ) |
109 |
108 77
|
npcand |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( V ` ( i + 1 ) ) - X ) + X ) = ( V ` ( i + 1 ) ) ) |
110 |
107 109
|
eqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` ( i + 1 ) ) + X ) = ( V ` ( i + 1 ) ) ) |
111 |
94 110
|
oveq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) = ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) |
112 |
78 111
|
eleq12d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( 0 + X ) e. ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) <-> X e. ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ) |
113 |
76 112
|
mtbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. ( 0 + X ) e. ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) ) |
114 |
|
0red |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> 0 e. RR ) |
115 |
90 88
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` i ) e. RR ) |
116 |
106 105
|
eqeltrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( Q ` ( i + 1 ) ) e. RR ) |
117 |
114 115 116 75
|
eliooshift |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( 0 e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) <-> ( 0 + X ) e. ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) ) ) |
118 |
113 117
|
mtbird |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -. 0 e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) |
119 |
111
|
reseq2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) ) = ( F |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) ) |
120 |
111
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) -cn-> CC ) = ( ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) -cn-> CC ) ) |
121 |
14 119 120
|
3eltr4d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( F |` ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) ) e. ( ( ( ( Q ` i ) + X ) (,) ( ( Q ` ( i + 1 ) ) + X ) ) -cn-> CC ) ) |
122 |
45
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> Y e. RR ) |
123 |
54
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> W e. RR ) |
124 |
9
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> N e. RR ) |
125 |
66 71 74 75 118 121 122 123 6 7 8 124 10 11
|
fourierdlem78 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> RR ) ) |
126 |
65 125
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) e. ( ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -cn-> CC ) ) |
127 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) |
128 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) |
129 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) |
130 |
23
|
renegcli |
|- -u _pi e. RR |
131 |
130
|
rexri |
|- -u _pi e. RR* |
132 |
131
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> -u _pi e. RR* ) |
133 |
23
|
rexri |
|- _pi e. RR* |
134 |
133
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> _pi e. RR* ) |
135 |
68
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> Q : ( 0 ... M ) --> ( -u _pi [,] _pi ) ) |
136 |
|
simplr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> i e. ( 0 ..^ M ) ) |
137 |
132 134 135 136
|
fourierdlem8 |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
138 |
|
ioossicc |
|- ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) |
139 |
138
|
sseli |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) -> s e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
140 |
139
|
adantl |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) ) |
141 |
137 140
|
sseldd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> s e. ( -u _pi [,] _pi ) ) |
142 |
2 33 45 54 6
|
fourierdlem9 |
|- ( ph -> H : ( -u _pi [,] _pi ) --> RR ) |
143 |
142
|
ad2antrr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> H : ( -u _pi [,] _pi ) --> RR ) |
144 |
143 141
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) e. RR ) |
145 |
7
|
fourierdlem43 |
|- K : ( -u _pi [,] _pi ) --> RR |
146 |
145
|
a1i |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> K : ( -u _pi [,] _pi ) --> RR ) |
147 |
146 141
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( K ` s ) e. RR ) |
148 |
144 147
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( H ` s ) x. ( K ` s ) ) e. RR ) |
149 |
8
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( ( H ` s ) x. ( K ` s ) ) e. RR ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
150 |
141 148 149
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( U ` s ) = ( ( H ` s ) x. ( K ` s ) ) ) |
151 |
150 148
|
eqeltrd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( U ` s ) e. RR ) |
152 |
151
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( U ` s ) e. CC ) |
153 |
9 10
|
fourierdlem18 |
|- ( ph -> S e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
154 |
|
cncff |
|- ( S e. ( ( -u _pi [,] _pi ) -cn-> RR ) -> S : ( -u _pi [,] _pi ) --> RR ) |
155 |
153 154
|
syl |
|- ( ph -> S : ( -u _pi [,] _pi ) --> RR ) |
156 |
155
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S : ( -u _pi [,] _pi ) --> RR ) |
157 |
156
|
adantr |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> S : ( -u _pi [,] _pi ) --> RR ) |
158 |
157 141
|
ffvelrnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( S ` s ) e. RR ) |
159 |
158
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( S ` s ) e. CC ) |
160 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) |
161 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) |
162 |
|
eqid |
|- ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) |
163 |
144
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( H ` s ) e. CC ) |
164 |
147
|
recnd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( K ` s ) e. CC ) |
165 |
38
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> RR C_ CC ) |
166 |
20 165
|
fssd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( I |` ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) ) : ( ( V ` i ) (,) ( V ` ( i + 1 ) ) ) --> CC ) |
167 |
|
eqid |
|- if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) = if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) |
168 |
33 1 2 3 4 54 6 12 13 15 17 18 19 166 22 167
|
fourierdlem75 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
169 |
142
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> H : ( -u _pi [,] _pi ) --> RR ) |
170 |
131
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> -u _pi e. RR* ) |
171 |
133
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> _pi e. RR* ) |
172 |
|
simpr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> i e. ( 0 ..^ M ) ) |
173 |
170 171 68 172
|
fourierdlem8 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) [,] ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
174 |
138 173
|
sstrid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) C_ ( -u _pi [,] _pi ) ) |
175 |
169 174
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) ) |
176 |
175
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) limCC ( Q ` i ) ) ) |
177 |
168 176
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) limCC ( Q ` i ) ) ) |
178 |
|
limcresi |
|- ( K limCC ( Q ` i ) ) C_ ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) |
179 |
7
|
fourierdlem62 |
|- K e. ( ( -u _pi [,] _pi ) -cn-> RR ) |
180 |
179
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> K e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
181 |
180 71
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` i ) ) e. ( K limCC ( Q ` i ) ) ) |
182 |
178 181
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` i ) ) e. ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
183 |
145
|
a1i |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> K : ( -u _pi [,] _pi ) --> RR ) |
184 |
183 174
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) ) |
185 |
184
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) limCC ( Q ` i ) ) ) |
186 |
182 185
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` i ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) limCC ( Q ` i ) ) ) |
187 |
160 161 162 163 164 177 186
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) x. ( K ` ( Q ` i ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) limCC ( Q ` i ) ) ) |
188 |
150
|
eqcomd |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( H ` s ) x. ( K ` s ) ) = ( U ` s ) ) |
189 |
188
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) ) |
190 |
189
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) limCC ( Q ` i ) ) ) |
191 |
187 190
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) x. ( K ` ( Q ` i ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) limCC ( Q ` i ) ) ) |
192 |
|
limcresi |
|- ( S limCC ( Q ` i ) ) C_ ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) |
193 |
153
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> S e. ( ( -u _pi [,] _pi ) -cn-> RR ) ) |
194 |
193 71
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` i ) ) e. ( S limCC ( Q ` i ) ) ) |
195 |
192 194
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` i ) ) e. ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
196 |
156 174
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) ) |
197 |
196
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) limCC ( Q ` i ) ) ) |
198 |
195 197
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` i ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) limCC ( Q ` i ) ) ) |
199 |
127 128 129 152 159 191 198
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) x. ( K ` ( Q ` i ) ) ) x. ( S ` ( Q ` i ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) limCC ( Q ` i ) ) ) |
200 |
60 11
|
fmptd |
|- ( ph -> G : ( -u _pi [,] _pi ) --> RR ) |
201 |
200
|
adantr |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> G : ( -u _pi [,] _pi ) --> RR ) |
202 |
201 174
|
feqresmpt |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( G ` s ) ) ) |
203 |
151 158
|
remulcld |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( ( U ` s ) x. ( S ` s ) ) e. RR ) |
204 |
11
|
fvmpt2 |
|- ( ( s e. ( -u _pi [,] _pi ) /\ ( ( U ` s ) x. ( S ` s ) ) e. RR ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) ) |
205 |
141 203 204
|
syl2anc |
|- ( ( ( ph /\ i e. ( 0 ..^ M ) ) /\ s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) -> ( G ` s ) = ( ( U ` s ) x. ( S ` s ) ) ) |
206 |
205
|
mpteq2dva |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( G ` s ) ) = ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) ) |
207 |
202 206
|
eqtr2d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) = ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) ) |
208 |
207
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) limCC ( Q ` i ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
209 |
199 208
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( if ( ( V ` i ) = X , D , ( ( R - if ( ( V ` i ) < X , W , Y ) ) / ( Q ` i ) ) ) x. ( K ` ( Q ` i ) ) ) x. ( S ` ( Q ` i ) ) ) e. ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` i ) ) ) |
210 |
|
eqid |
|- if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) = if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) |
211 |
33 1 2 3 45 5 6 12 13 16 17 18 19 20 21 210
|
fourierdlem74 |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) e. ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
212 |
175
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( H |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
213 |
211 212
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( H ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
214 |
|
limcresi |
|- ( K limCC ( Q ` ( i + 1 ) ) ) C_ ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) |
215 |
180 74
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` ( i + 1 ) ) ) e. ( K limCC ( Q ` ( i + 1 ) ) ) ) |
216 |
214 215
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` ( i + 1 ) ) ) e. ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
217 |
184
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( K |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
218 |
216 217
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( K ` ( Q ` ( i + 1 ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( K ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
219 |
160 161 162 163 164 213 218
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) x. ( K ` ( Q ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
220 |
189
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( H ` s ) x. ( K ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
221 |
219 220
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) x. ( K ` ( Q ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( U ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
222 |
|
limcresi |
|- ( S limCC ( Q ` ( i + 1 ) ) ) C_ ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) |
223 |
193 74
|
cnlimci |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` ( i + 1 ) ) ) e. ( S limCC ( Q ` ( i + 1 ) ) ) ) |
224 |
222 223
|
sselid |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` ( i + 1 ) ) ) e. ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
225 |
196
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( S |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
226 |
224 225
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( S ` ( Q ` ( i + 1 ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( S ` s ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
227 |
127 128 129 152 159 221 226
|
mullimc |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) x. ( K ` ( Q ` ( i + 1 ) ) ) ) x. ( S ` ( Q ` ( i + 1 ) ) ) ) e. ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
228 |
207
|
oveq1d |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( s e. ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) |-> ( ( U ` s ) x. ( S ` s ) ) ) limCC ( Q ` ( i + 1 ) ) ) = ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
229 |
227 228
|
eleqtrd |
|- ( ( ph /\ i e. ( 0 ..^ M ) ) -> ( ( if ( ( V ` ( i + 1 ) ) = X , C , ( ( L - if ( ( V ` ( i + 1 ) ) < X , W , Y ) ) / ( Q ` ( i + 1 ) ) ) ) x. ( K ` ( Q ` ( i + 1 ) ) ) ) x. ( S ` ( Q ` ( i + 1 ) ) ) ) e. ( ( G |` ( ( Q ` i ) (,) ( Q ` ( i + 1 ) ) ) ) limCC ( Q ` ( i + 1 ) ) ) ) |
230 |
18 12 34 62 126 209 229
|
fourierdlem69 |
|- ( ph -> G e. L^1 ) |